肿瘤治疗场与微管电生理活动之间的电动相互作用

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL APL Bioengineering Pub Date : 2024-06-03 eCollection Date: 2024-06-01 DOI:10.1063/5.0197900
Xing Li, Kaida Liu, Haohan Fang, Zirong Liu, Yuchen Tang, Ping Dai
{"title":"肿瘤治疗场与微管电生理活动之间的电动相互作用","authors":"Xing Li, Kaida Liu, Haohan Fang, Zirong Liu, Yuchen Tang, Ping Dai","doi":"10.1063/5.0197900","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor treating fields (TTFields) are a type of sinusoidal alternating current electric field that has proven effective in inhibiting the reproduction of dividing tumor cells. Despite their recognized impact, the precise biophysical mechanisms underlying the unique effects of TTFields remain unknown. Many of the previous studies predominantly attribute the inhibitory effects of TTFields to mitotic disruption, with intracellular microtubules identified as crucial targets. However, this conceptual framework lacks substantiation at the mesoscopic level. This study addresses the existing gap by constructing force models for tubulin and other key subcellular structures involved in microtubule electrophysiological activities under TTFields exposure. The primary objective is to explore whether the electric force or torque exerted by TTFields significantly influences the normal structure and activities of microtubules. Initially, we examine the potential effect on the dynamic stability of microtubule structures by calculating the electric field torque on the tubulin dimer orientation. Furthermore, given the importance of electrostatics in microtubule-associated activities, such as chromosome segregation and substance transport of kinesin during mitosis, we investigate the interaction between TTFields and these electrostatic processes. Our data show that the electrodynamic effects of TTFields are most likely too weak to disrupt normal microtubule electrophysiological activities significantly. Consequently, we posit that the observed cytoskeleton destruction in mitosis is more likely attributable to non-mechanical mechanisms.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151432/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrodynamic interaction between tumor treating fields and microtubule electrophysiological activities.\",\"authors\":\"Xing Li, Kaida Liu, Haohan Fang, Zirong Liu, Yuchen Tang, Ping Dai\",\"doi\":\"10.1063/5.0197900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor treating fields (TTFields) are a type of sinusoidal alternating current electric field that has proven effective in inhibiting the reproduction of dividing tumor cells. Despite their recognized impact, the precise biophysical mechanisms underlying the unique effects of TTFields remain unknown. Many of the previous studies predominantly attribute the inhibitory effects of TTFields to mitotic disruption, with intracellular microtubules identified as crucial targets. However, this conceptual framework lacks substantiation at the mesoscopic level. This study addresses the existing gap by constructing force models for tubulin and other key subcellular structures involved in microtubule electrophysiological activities under TTFields exposure. The primary objective is to explore whether the electric force or torque exerted by TTFields significantly influences the normal structure and activities of microtubules. Initially, we examine the potential effect on the dynamic stability of microtubule structures by calculating the electric field torque on the tubulin dimer orientation. Furthermore, given the importance of electrostatics in microtubule-associated activities, such as chromosome segregation and substance transport of kinesin during mitosis, we investigate the interaction between TTFields and these electrostatic processes. Our data show that the electrodynamic effects of TTFields are most likely too weak to disrupt normal microtubule electrophysiological activities significantly. Consequently, we posit that the observed cytoskeleton destruction in mitosis is more likely attributable to non-mechanical mechanisms.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151432/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0197900\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0197900","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤治疗场(TTFields)是一种正弦交流电场,已被证明能有效抑制分裂中的肿瘤细胞的繁殖。尽管肿瘤治疗场的影响已得到公认,但其独特效应的确切生物物理机制仍不为人知。之前的许多研究主要将 TTField 的抑制作用归因于有丝分裂破坏,而细胞内微管被认为是关键靶点。然而,这一概念框架缺乏中观层面的证实。本研究通过构建微管蛋白和其他关键亚细胞结构在 TTFields 暴露下参与微管电生理活动的力模型,填补了现有空白。研究的主要目的是探索 TTFields 施加的电场力或力矩是否会显著影响微管的正常结构和活动。首先,我们通过计算电场力矩对微管蛋白二聚体取向的影响,研究其对微管结构动态稳定性的潜在影响。此外,鉴于静电在染色体分离和有丝分裂过程中驱动蛋白的物质运输等微管相关活动中的重要性,我们研究了 TTFields 与这些静电过程之间的相互作用。我们的数据显示,TTFields 的电动效应很可能太弱,无法显著干扰正常的微管电生理活动。因此,我们认为在有丝分裂过程中观察到的细胞骨架破坏更有可能归因于非机械机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrodynamic interaction between tumor treating fields and microtubule electrophysiological activities.

Tumor treating fields (TTFields) are a type of sinusoidal alternating current electric field that has proven effective in inhibiting the reproduction of dividing tumor cells. Despite their recognized impact, the precise biophysical mechanisms underlying the unique effects of TTFields remain unknown. Many of the previous studies predominantly attribute the inhibitory effects of TTFields to mitotic disruption, with intracellular microtubules identified as crucial targets. However, this conceptual framework lacks substantiation at the mesoscopic level. This study addresses the existing gap by constructing force models for tubulin and other key subcellular structures involved in microtubule electrophysiological activities under TTFields exposure. The primary objective is to explore whether the electric force or torque exerted by TTFields significantly influences the normal structure and activities of microtubules. Initially, we examine the potential effect on the dynamic stability of microtubule structures by calculating the electric field torque on the tubulin dimer orientation. Furthermore, given the importance of electrostatics in microtubule-associated activities, such as chromosome segregation and substance transport of kinesin during mitosis, we investigate the interaction between TTFields and these electrostatic processes. Our data show that the electrodynamic effects of TTFields are most likely too weak to disrupt normal microtubule electrophysiological activities significantly. Consequently, we posit that the observed cytoskeleton destruction in mitosis is more likely attributable to non-mechanical mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
期刊最新文献
Apoptosis-associated genetic mechanisms in the transition from rheumatoid arthritis to osteoporosis: A bioinformatics and functional analysis approach. A programmable platform for probing cell migration and proliferation. Toward assessment of rupture risk predictors in abdominal aortic aneurysms including intraluminal thrombus based on 3D+t ultrasound images. M/EEG source localization for both subcortical and cortical sources using a convolutional neural network with a realistic head conductivity model. 3D confinement alters smooth muscle cell responses to chemical and mechanical cues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1