Mina Afrashteh, Mohammad Rahmati-Yamchi, Mohammad Shimia, Bahman Yousefi, Maryam Majidinia
{"title":"对胶质母细胞瘤中 PI3K/AKT/mTOR 信号通路和非编码 RNA 介导的耐药性的新认识","authors":"Mina Afrashteh, Mohammad Rahmati-Yamchi, Mohammad Shimia, Bahman Yousefi, Maryam Majidinia","doi":"10.2174/0115665240309647240516042716","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme [GBM] is a highly aggressive grade IV central nervous system tumor with a dismal prognosis. Factors such as late detection, treatment limitations due to its aggressive nature, and, notably, drug resistance significantly affect clinical outcomes. Despite the effectiveness of Temozolomide [TMZ], a potent chemotherapy agent, the development of drug resistance remains a major challenge. Given the poor survival rates and chemoresistance, there is an urgent need for novel treatment strategies. Non-coding RNAs, particularly microRNAs [miRNAs], offer a promising approach to GBM diagnosis and treatment. These small non-coding RNAs play crucial roles in tumor progression, either suppressing or promoting oncogenic characteristics. The phosphoinositide-3 kinase [PI3K]/AKT/ mTOR pathway, which regulates essential biological processes like proliferation and survival, is a key target of miRNAs in cancer. Studies have underscored the significance of PI3K/AKT/mTOR signaling in drug resistance development and its interplay with non-coding RNAs as mediators of tumorigenesis. This review aims to outline the involvement of PI3K/AKT/mTOR signaling in miRNA modulation and strategies to overcome chemoresistance in GBM.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Insights into the PI3K/AKT/mTOR Signaling Pathway and Non-Coding RNA-mediated Drug Resistance in Glioblastoma.\",\"authors\":\"Mina Afrashteh, Mohammad Rahmati-Yamchi, Mohammad Shimia, Bahman Yousefi, Maryam Majidinia\",\"doi\":\"10.2174/0115665240309647240516042716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme [GBM] is a highly aggressive grade IV central nervous system tumor with a dismal prognosis. Factors such as late detection, treatment limitations due to its aggressive nature, and, notably, drug resistance significantly affect clinical outcomes. Despite the effectiveness of Temozolomide [TMZ], a potent chemotherapy agent, the development of drug resistance remains a major challenge. Given the poor survival rates and chemoresistance, there is an urgent need for novel treatment strategies. Non-coding RNAs, particularly microRNAs [miRNAs], offer a promising approach to GBM diagnosis and treatment. These small non-coding RNAs play crucial roles in tumor progression, either suppressing or promoting oncogenic characteristics. The phosphoinositide-3 kinase [PI3K]/AKT/ mTOR pathway, which regulates essential biological processes like proliferation and survival, is a key target of miRNAs in cancer. Studies have underscored the significance of PI3K/AKT/mTOR signaling in drug resistance development and its interplay with non-coding RNAs as mediators of tumorigenesis. This review aims to outline the involvement of PI3K/AKT/mTOR signaling in miRNA modulation and strategies to overcome chemoresistance in GBM.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240309647240516042716\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240309647240516042716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Emerging Insights into the PI3K/AKT/mTOR Signaling Pathway and Non-Coding RNA-mediated Drug Resistance in Glioblastoma.
Glioblastoma multiforme [GBM] is a highly aggressive grade IV central nervous system tumor with a dismal prognosis. Factors such as late detection, treatment limitations due to its aggressive nature, and, notably, drug resistance significantly affect clinical outcomes. Despite the effectiveness of Temozolomide [TMZ], a potent chemotherapy agent, the development of drug resistance remains a major challenge. Given the poor survival rates and chemoresistance, there is an urgent need for novel treatment strategies. Non-coding RNAs, particularly microRNAs [miRNAs], offer a promising approach to GBM diagnosis and treatment. These small non-coding RNAs play crucial roles in tumor progression, either suppressing or promoting oncogenic characteristics. The phosphoinositide-3 kinase [PI3K]/AKT/ mTOR pathway, which regulates essential biological processes like proliferation and survival, is a key target of miRNAs in cancer. Studies have underscored the significance of PI3K/AKT/mTOR signaling in drug resistance development and its interplay with non-coding RNAs as mediators of tumorigenesis. This review aims to outline the involvement of PI3K/AKT/mTOR signaling in miRNA modulation and strategies to overcome chemoresistance in GBM.
期刊介绍:
Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.