{"title":"SHP2异构抑制剂专利回顾(2018年至今)。","authors":"Alessia Petrocchi, Alina Ciammaichella","doi":"10.1080/13543776.2024.2365410","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration.</p><p><strong>Areas covered: </strong>This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2.</p><p><strong>Expert opinion: </strong>Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A patent review of SHP2 allosteric inhibitors (2018-present).\",\"authors\":\"Alessia Petrocchi, Alina Ciammaichella\",\"doi\":\"10.1080/13543776.2024.2365410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration.</p><p><strong>Areas covered: </strong>This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2.</p><p><strong>Expert opinion: </strong>Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.</p>\",\"PeriodicalId\":12314,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Patents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Patents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13543776.2024.2365410\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2365410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A patent review of SHP2 allosteric inhibitors (2018-present).
Introduction: SHP2 (Src homology region 2-containing protein tyrosine phosphatase 2) is a target of interest for cancer therapy due to its key role in the regulation of the RAS/MAPK signal transduction pathway downstream of Receptor Tyrosine Kinases (RTKs). Moreover, SHP2 can inhibit T cells via the PD-1/PD-L1 pathway. SHP2 plays a critical role in numerous physiological and pathological cellular processes, such as cell proliferation, survival, and migration.
Areas covered: This review examines SHP2 allosteric inhibitors reported in patents published in Espacenet and Scifinder databases from 2018 to present. An overview of claimed structures is conducted, focusing attention on structural modifications compared to SHP099, the first described allosteric inhibitor of SHP2.
Expert opinion: Multiple potent allosteric SHP2 inhibitors have been discovered, disclosed, and tested in a variety of preclinical cancer models with strong evidence of efficacy. Fifteen compounds are currently in clinical development, but none of them have been approved for marketing. Until now, long-term benefit of SHP2 inhibitors as monotherapy agents have not been demonstrated due to acquired mechanisms of resistance and/or lack of efficacy. However, combination therapies with a variety of agents, such as MEK, BRAF, EGFR, RAS-G12C and PDL-1 inhibitors, have high potential and are currently an extensive area of investigation.
期刊介绍:
Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature.
The Editors welcome:
Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area
Patent Evaluations examining the aims and chemical and biological claims of individual patents
Perspectives on issues relating to intellectual property
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D
Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.