{"title":"人类基因组组装的全分辨率 HLA 和 KIR 基因注释。","authors":"Ying Zhou, Li Song, Heng Li","doi":"10.1101/gr.278985.124","DOIUrl":null,"url":null,"abstract":"<p><p>The human leukocyte antigen (HLA) genes and the killer cell immunoglobulin-like receptor (KIR) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, it is difficult to study them with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a nontrivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotate 9931 HLA and KIR genes and found that almost half of these genes, 4068, have novel sequences compared with the current Immuno Polymorphism Database (IPD). These novel gene sequences are represented by 2664 distinct alleles, some of which contained nonsynonymous variations, resulting in 92 novel protein sequences. We demonstrate the complex haplotype structures at the two loci and report the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":"1931-1941"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-resolution HLA and KIR gene annotations for human genome assemblies.\",\"authors\":\"Ying Zhou, Li Song, Heng Li\",\"doi\":\"10.1101/gr.278985.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human leukocyte antigen (HLA) genes and the killer cell immunoglobulin-like receptor (KIR) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, it is difficult to study them with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a nontrivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotate 9931 HLA and KIR genes and found that almost half of these genes, 4068, have novel sequences compared with the current Immuno Polymorphism Database (IPD). These novel gene sequences are represented by 2664 distinct alleles, some of which contained nonsynonymous variations, resulting in 92 novel protein sequences. We demonstrate the complex haplotype structures at the two loci and report the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.</p>\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\" \",\"pages\":\"1931-1941\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.278985.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.278985.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Full-resolution HLA and KIR gene annotations for human genome assemblies.
The human leukocyte antigen (HLA) genes and the killer cell immunoglobulin-like receptor (KIR) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, it is difficult to study them with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a nontrivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotate 9931 HLA and KIR genes and found that almost half of these genes, 4068, have novel sequences compared with the current Immuno Polymorphism Database (IPD). These novel gene sequences are represented by 2664 distinct alleles, some of which contained nonsynonymous variations, resulting in 92 novel protein sequences. We demonstrate the complex haplotype structures at the two loci and report the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.