{"title":"使用委托函数对过渡状态进行系统模拟和分析。","authors":"","doi":"10.1038/s43588-024-00652-1","DOIUrl":null,"url":null,"abstract":"Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic simulations and analysis of transition states using committor functions\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00652-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00652-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00652-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Systematic simulations and analysis of transition states using committor functions
Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.