心脏组织的术中特征描述:光散射光谱学的潜力。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1117/1.JBO.29.6.066005
Brian Cottle, Sarthak Tiwari, Aditya Kaza, Frank B Sachse, Robert Hitchcock
{"title":"心脏组织的术中特征描述:光散射光谱学的潜力。","authors":"Brian Cottle, Sarthak Tiwari, Aditya Kaza, Frank B Sachse, Robert Hitchcock","doi":"10.1117/1.JBO.29.6.066005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.</p><p><strong>Aim: </strong>To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.</p><p><strong>Approach: </strong>A custom LSS probe was used to gather spectral data from locations across 14 excised human pediatric nodal tissue samples (8 sinus nodes, 6 atrioventricular nodes). The LSS spectra were used to train linear and neural-network-based regressor models to predict tissue composition characteristics derived from the 3D models.</p><p><strong>Results: </strong>Nodal tissue region nuclear densities were reported. A linear model trained to regress nuclear density from spectra achieved a prediction r-squared of 0.64 and a concordance correlation coefficient of 0.78.</p><p><strong>Conclusions: </strong>These methods build on previous studies suggesting that LSS measurements combined with machine learning signal processing can provide clinically relevant cardiac tissue composition.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 6","pages":"066005"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy.\",\"authors\":\"Brian Cottle, Sarthak Tiwari, Aditya Kaza, Frank B Sachse, Robert Hitchcock\",\"doi\":\"10.1117/1.JBO.29.6.066005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.</p><p><strong>Aim: </strong>To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.</p><p><strong>Approach: </strong>A custom LSS probe was used to gather spectral data from locations across 14 excised human pediatric nodal tissue samples (8 sinus nodes, 6 atrioventricular nodes). The LSS spectra were used to train linear and neural-network-based regressor models to predict tissue composition characteristics derived from the 3D models.</p><p><strong>Results: </strong>Nodal tissue region nuclear densities were reported. A linear model trained to regress nuclear density from spectra achieved a prediction r-squared of 0.64 and a concordance correlation coefficient of 0.78.</p><p><strong>Conclusions: </strong>These methods build on previous studies suggesting that LSS measurements combined with machine learning signal processing can provide clinically relevant cardiac tissue composition.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 6\",\"pages\":\"066005\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.6.066005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.6.066005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:心脏传导系统受损仍是手术治疗先天性心脏病的最大风险之一。这项工作展示了如何利用光散射光谱学(LSS)对心脏组织区域进行非破坏性表征。目的:介绍一种将组织成分信息与特定位置的 LSS 数据关联起来的方法,并进一步评估作为非破坏性组织表征方法的 LSS 和机器学习系统:使用定制的 LSS 探头从 14 个切除的人体小儿结节组织样本(8 个窦房结,6 个房室结)的不同位置收集光谱数据。LSS 频谱用于训练线性模型和基于神经网络的回归模型,以预测三维模型得出的组织成分特征:结果:报告了结节组织区域的核密度。通过训练线性模型对光谱中的核密度进行回归,预测 r 平方为 0.64,一致性相关系数为 0.78:这些方法建立在以往研究的基础上,表明 LSS 测量与机器学习信号处理相结合可提供临床相关的心脏组织成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intraoperative characterization of cardiac tissue: the potential of light scattering spectroscopy.

Significance: Damage to the cardiac conduction system remains one of the most significant risks associated with surgical interventions to correct congenital heart disease. This work demonstrates how light-scattering spectroscopy (LSS) can be used to non-destructively characterize cardiac tissue regions.

Aim: To present an approach for associating tissue composition information with location-specific LSS data and further evaluate an LSS and machine learning system as a method for non-destructive tissue characterization.

Approach: A custom LSS probe was used to gather spectral data from locations across 14 excised human pediatric nodal tissue samples (8 sinus nodes, 6 atrioventricular nodes). The LSS spectra were used to train linear and neural-network-based regressor models to predict tissue composition characteristics derived from the 3D models.

Results: Nodal tissue region nuclear densities were reported. A linear model trained to regress nuclear density from spectra achieved a prediction r-squared of 0.64 and a concordance correlation coefficient of 0.78.

Conclusions: These methods build on previous studies suggesting that LSS measurements combined with machine learning signal processing can provide clinically relevant cardiac tissue composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems. Comparing spatial distributions of ALA-PpIX and indocyanine green in a whole pig brain glioma model using 3D fluorescence cryotomography. Detection properties of indium-111 and IRDye800CW for intraoperative molecular imaging use across tissue phantom models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1