Matthew Nowatzke, Lijing Gao, Michael C. Dorneich, Emily A. Heaton, Andy VanLoocke
{"title":"与美国玉米带农民的访谈强调了改进决策支持系统的机会以及农田多样化继续面临的结构性障碍","authors":"Matthew Nowatzke, Lijing Gao, Michael C. Dorneich, Emily A. Heaton, Andy VanLoocke","doi":"10.1007/s11119-024-10154-9","DOIUrl":null,"url":null,"abstract":"<p>Diversifying high-input, monocropped landscapes like the US Corn Belt would provide both economic and ecosystem service benefits to the agricultural landscape. Decision support systems (DSS) and digital agriculture could help farmers decide if diversification is suitable for their operation. However, adoption of DSS by farmers remains low, likely due to lack of farmer engagement before and during the DSS development process. This study aimed to better understand the tasks, tools, and people involved in implementing farmland diversification with the goal to inform design of agricultural DSS. Semi-structured interviews were conducted with 11 farmers who had diversified their corn/soybean cropland with government-supported conservation programs (e.g., CRP, wetlands) and alternative crops (e.g., small grains, pasture) in the past four years. Interview data was transcribed and then analyzed using affinity diagramming. Results show farmers needed DSS to layer multiple sources of data and observations over several years to identify field productivity trends and drivers; spatial orientation of practices to fit management and field constraints; matching operation goals to alternative practices; financial planning and market exploration; and information on promising emerging practices like subsidized pollinator habitat. However, the interviews also highlighted structural barriers to diversification that DSS cannot or can only partially address. These included social pressures; market access; crop insurance policy; and quality of relationships with governmental agencies. Results indicate better DSS design can empower individual farmers to diversify cropland, but structural interventions will be needed to successfully diversify the agricultural landscape and support economic and ecosystem health.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"15 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interviews with farmers from the US corn belt highlight opportunity for improved decision support systems and continued structural barriers to farmland diversification\",\"authors\":\"Matthew Nowatzke, Lijing Gao, Michael C. Dorneich, Emily A. Heaton, Andy VanLoocke\",\"doi\":\"10.1007/s11119-024-10154-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diversifying high-input, monocropped landscapes like the US Corn Belt would provide both economic and ecosystem service benefits to the agricultural landscape. Decision support systems (DSS) and digital agriculture could help farmers decide if diversification is suitable for their operation. However, adoption of DSS by farmers remains low, likely due to lack of farmer engagement before and during the DSS development process. This study aimed to better understand the tasks, tools, and people involved in implementing farmland diversification with the goal to inform design of agricultural DSS. Semi-structured interviews were conducted with 11 farmers who had diversified their corn/soybean cropland with government-supported conservation programs (e.g., CRP, wetlands) and alternative crops (e.g., small grains, pasture) in the past four years. Interview data was transcribed and then analyzed using affinity diagramming. Results show farmers needed DSS to layer multiple sources of data and observations over several years to identify field productivity trends and drivers; spatial orientation of practices to fit management and field constraints; matching operation goals to alternative practices; financial planning and market exploration; and information on promising emerging practices like subsidized pollinator habitat. However, the interviews also highlighted structural barriers to diversification that DSS cannot or can only partially address. These included social pressures; market access; crop insurance policy; and quality of relationships with governmental agencies. Results indicate better DSS design can empower individual farmers to diversify cropland, but structural interventions will be needed to successfully diversify the agricultural landscape and support economic and ecosystem health.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10154-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10154-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interviews with farmers from the US corn belt highlight opportunity for improved decision support systems and continued structural barriers to farmland diversification
Diversifying high-input, monocropped landscapes like the US Corn Belt would provide both economic and ecosystem service benefits to the agricultural landscape. Decision support systems (DSS) and digital agriculture could help farmers decide if diversification is suitable for their operation. However, adoption of DSS by farmers remains low, likely due to lack of farmer engagement before and during the DSS development process. This study aimed to better understand the tasks, tools, and people involved in implementing farmland diversification with the goal to inform design of agricultural DSS. Semi-structured interviews were conducted with 11 farmers who had diversified their corn/soybean cropland with government-supported conservation programs (e.g., CRP, wetlands) and alternative crops (e.g., small grains, pasture) in the past four years. Interview data was transcribed and then analyzed using affinity diagramming. Results show farmers needed DSS to layer multiple sources of data and observations over several years to identify field productivity trends and drivers; spatial orientation of practices to fit management and field constraints; matching operation goals to alternative practices; financial planning and market exploration; and information on promising emerging practices like subsidized pollinator habitat. However, the interviews also highlighted structural barriers to diversification that DSS cannot or can only partially address. These included social pressures; market access; crop insurance policy; and quality of relationships with governmental agencies. Results indicate better DSS design can empower individual farmers to diversify cropland, but structural interventions will be needed to successfully diversify the agricultural landscape and support economic and ecosystem health.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.