手动校准和验证建筑能耗模拟的系统方法

IF 3.5 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Smart and Sustainable Built Environment Pub Date : 2024-06-05 DOI:10.1108/sasbe-10-2023-0296
Gökçe Tomrukçu, Hazal Kizildag, Gizem Avgan, Ozlem Dal, Nese Ganic Saglam, Ece Ozdemir, Touraj Ashrafian
{"title":"手动校准和验证建筑能耗模拟的系统方法","authors":"Gökçe Tomrukçu, Hazal Kizildag, Gizem Avgan, Ozlem Dal, Nese Ganic Saglam, Ece Ozdemir, Touraj Ashrafian","doi":"10.1108/sasbe-10-2023-0296","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.Design/methodology/approachA standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.FindingsDiscrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.Originality/valueThis paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic approach to manual calibration and validation of building energy simulation\",\"authors\":\"Gökçe Tomrukçu, Hazal Kizildag, Gizem Avgan, Ozlem Dal, Nese Ganic Saglam, Ece Ozdemir, Touraj Ashrafian\",\"doi\":\"10.1108/sasbe-10-2023-0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.Design/methodology/approachA standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.FindingsDiscrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.Originality/valueThis paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.\",\"PeriodicalId\":45779,\"journal\":{\"name\":\"Smart and Sustainable Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/sasbe-10-2023-0296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-10-2023-0296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究旨在创建一种高效的方法,以在时间密集型数据收集所带来的挑战中验证建筑能耗模拟模型。该系统框架强调通过战略性短期数据采集实现模型校准的精确性,并利用战略性采集的数据集进行关键调整。利用平均偏差(MBE)和均方根误差变异系数(CV(RMSE))等指标,该方法旨在提高能效评估的准确性,而无需漫长的数据收集时间。通过实地调查,建立了精确的能源模型,强调了用户参数和标准的合规性。利用 MBE 和 CV(RMSE)指标,将模拟输出与短期实际测量结果进行比较,重点关注内部温度和二氧化碳水平。对能源账单和消耗数据进行了仔细检查,以根据不确定的参数验证天然气和电力的使用情况。经过调整,独立学校 1 的平均内部温度从 19.5 ° C 升至 21.3 °C,MBE 和 CV(RMSE) 有助于验证。校园设施表现出复杂的变化,通过计算二氧化碳水平和占用模式来解决,类似的指标有助于验证。照明和电气设备计划的修订改善了耗电量预测。对天然气使用量的验证和每月误差率的计算完善了模拟模型。它提出了一种战略性的短期数据收集方法。它使用 MBE 和 CV(RMSE) 指标进行综合评估,以确保在不收集大量数据的情况下进行可靠的能效预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic approach to manual calibration and validation of building energy simulation
PurposeThis study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.Design/methodology/approachA standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.FindingsDiscrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.Originality/valueThis paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart and Sustainable Built Environment
Smart and Sustainable Built Environment GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
9.20
自引率
8.30%
发文量
53
期刊最新文献
Towards promoting circular building adaptability in adaptive reuse projects: a co-developed framework Sources of occupational stress in UK construction projects: an empirical investigation and agenda for future research Nudge or mandate: an exploration into the constraints of volumetric modular construction in Australia Structural determinants of the uptake of cyber-physical systems for facilities management – a confirmatory factor analysis approach Public toilets for accessible and inclusive cities: disability, design and maintenance from the perspective of wheelchair users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1