Ramona Georgescu-State, J. V. van Staden, Raluca‐Ioana Stefan‐van Staden, R. State, Florica Papa
{"title":"利用基于还原石墨烯氧化物的聚吡咯和双金属纳米复合材料的便携式电化学平台现场快速、高灵敏地测定艳红","authors":"Ramona Georgescu-State, J. V. van Staden, Raluca‐Ioana Stefan‐van Staden, R. State, Florica Papa","doi":"10.1149/1945-7111/ad541b","DOIUrl":null,"url":null,"abstract":"\n Allura red (AR) is classified as an azo dye and is often used as a beverage and food additive. Nevertheless, the need for dose management of Allura red becomes especially important owing to the potential damage caused by the azo structure to the human body and the environment. In order to combat these problems, a novel portable electrochemical platform using a screen-printed carbon electrode (SPCE) that has been modified with poly(pyrrole) and Co-Ni bimetallic nanocomposites anchored on reduced graphene oxide (Co-Ni@rGO) was developed. The purpose of this platform is to enable rapid on-site and very sensitive determination of Allura red from carbonated energy beverages and water samples. Under ideal experimental conditions, the proposed platform's response exhibits a notable linear relationship with the concentration of Allura red within the range of 0.0001-10 µM, having a very low limit of detection (LOD) of 0.03 nM and a high sensitivity of 24.62 μA μM-1 cm-2. Furthermore, the PPy/Co-Ni@rGO/SPCE platform exhibited favorable characteristics in terms of reproducibility, repeatability, stability, and selectivity for the quantification of Allura red. Consequently, the developed platform was capable of practically and effectively determining the Allura red dye content from various real samples, showing satisfactory recovery rates.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":"11 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast On-Site and Highly Sensitive Determination of Allura Red Using a Portable Electrochemical Platform Based on Poly(pyrrole) and Bimetallic Nanocomposites Anchored on Reduced Graphene Oxide\",\"authors\":\"Ramona Georgescu-State, J. V. van Staden, Raluca‐Ioana Stefan‐van Staden, R. State, Florica Papa\",\"doi\":\"10.1149/1945-7111/ad541b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Allura red (AR) is classified as an azo dye and is often used as a beverage and food additive. Nevertheless, the need for dose management of Allura red becomes especially important owing to the potential damage caused by the azo structure to the human body and the environment. In order to combat these problems, a novel portable electrochemical platform using a screen-printed carbon electrode (SPCE) that has been modified with poly(pyrrole) and Co-Ni bimetallic nanocomposites anchored on reduced graphene oxide (Co-Ni@rGO) was developed. The purpose of this platform is to enable rapid on-site and very sensitive determination of Allura red from carbonated energy beverages and water samples. Under ideal experimental conditions, the proposed platform's response exhibits a notable linear relationship with the concentration of Allura red within the range of 0.0001-10 µM, having a very low limit of detection (LOD) of 0.03 nM and a high sensitivity of 24.62 μA μM-1 cm-2. Furthermore, the PPy/Co-Ni@rGO/SPCE platform exhibited favorable characteristics in terms of reproducibility, repeatability, stability, and selectivity for the quantification of Allura red. Consequently, the developed platform was capable of practically and effectively determining the Allura red dye content from various real samples, showing satisfactory recovery rates.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad541b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad541b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
杜鹃红(AR)被归类为偶氮染料,通常用作饮料和食品添加剂。然而,由于偶氮结构可能对人体和环境造成损害,因此对 Allura 红进行剂量管理就变得尤为重要。为了解决这些问题,我们开发了一种新型便携式电化学平台,该平台使用丝网印刷碳电极 (SPCE),该电极使用聚吡咯和锚定在还原氧化石墨烯上的钴镍双金属纳米复合材料 (Co-Ni@rGO) 进行改性。该平台旨在现场快速、灵敏地测定碳酸饮料和水样中的 Allura 红。在理想的实验条件下,该平台的响应与 Allura 红的浓度在 0.0001-10 µM 范围内呈显著的线性关系,检测限(LOD)极低,为 0.03 nM,灵敏度高,为 24.62 μA μM-1 cm-2。此外,PPy/Co-Ni@rGO/SPCE 平台在 Allura 红的定量方面表现出良好的重现性、可重复性、稳定性和选择性。因此,所开发的平台能够切实有效地测定各种实际样品中的 Allura 红染料含量,并显示出令人满意的回收率。
Fast On-Site and Highly Sensitive Determination of Allura Red Using a Portable Electrochemical Platform Based on Poly(pyrrole) and Bimetallic Nanocomposites Anchored on Reduced Graphene Oxide
Allura red (AR) is classified as an azo dye and is often used as a beverage and food additive. Nevertheless, the need for dose management of Allura red becomes especially important owing to the potential damage caused by the azo structure to the human body and the environment. In order to combat these problems, a novel portable electrochemical platform using a screen-printed carbon electrode (SPCE) that has been modified with poly(pyrrole) and Co-Ni bimetallic nanocomposites anchored on reduced graphene oxide (Co-Ni@rGO) was developed. The purpose of this platform is to enable rapid on-site and very sensitive determination of Allura red from carbonated energy beverages and water samples. Under ideal experimental conditions, the proposed platform's response exhibits a notable linear relationship with the concentration of Allura red within the range of 0.0001-10 µM, having a very low limit of detection (LOD) of 0.03 nM and a high sensitivity of 24.62 μA μM-1 cm-2. Furthermore, the PPy/Co-Ni@rGO/SPCE platform exhibited favorable characteristics in terms of reproducibility, repeatability, stability, and selectivity for the quantification of Allura red. Consequently, the developed platform was capable of practically and effectively determining the Allura red dye content from various real samples, showing satisfactory recovery rates.