Gustavo Garbelini de Menezes, Narco Afonso Ravazzoli Maciejewski, Elissa Soares de Carvalho, T. Bazzo
{"title":"设计表面贴装式永磁同步发电机的完整程序","authors":"Gustavo Garbelini de Menezes, Narco Afonso Ravazzoli Maciejewski, Elissa Soares de Carvalho, T. Bazzo","doi":"10.3390/machines12060384","DOIUrl":null,"url":null,"abstract":"This paper sets forth a thorough procedure to design surface-mounted permanent magnet synchronous generators. Since synchronous generators generate the majority of electrical energy, their relevance in society nowadays is substantial. As a consequence, the methodology to design these electrical machines also holds great importance. However, even though a considerable amount of works addresses the matter, it is difficult to find a complete and thoroughly explained design procedure. The proposed method is based on analytical equations to fully consider PM generator fundamentals with a few simplifications, which implies in a considerable number of design equations and parameters. Differently from most papers on the design of PM synchronous generators, a significant level of detail and explanation is presented, all design choices are discussed, and the suggested ranges for the design parameters are shown. This results in a straightforward procedure that allows non-experienced designers to easily replicate the results and effectively enhance the comprehension of permanent magnet synchronous machines, and provides a guideline for researchers from other fields who may need to understand and perform a synchronous generator design. To show the effectiveness of the proposed design procedure, a PM generator is designed, and the results are compared with a finite element simulation, showing good accuracy.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"12 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Thorough Procedure to Design Surface-Mounted Permanent Magnet Synchronous Generators\",\"authors\":\"Gustavo Garbelini de Menezes, Narco Afonso Ravazzoli Maciejewski, Elissa Soares de Carvalho, T. Bazzo\",\"doi\":\"10.3390/machines12060384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper sets forth a thorough procedure to design surface-mounted permanent magnet synchronous generators. Since synchronous generators generate the majority of electrical energy, their relevance in society nowadays is substantial. As a consequence, the methodology to design these electrical machines also holds great importance. However, even though a considerable amount of works addresses the matter, it is difficult to find a complete and thoroughly explained design procedure. The proposed method is based on analytical equations to fully consider PM generator fundamentals with a few simplifications, which implies in a considerable number of design equations and parameters. Differently from most papers on the design of PM synchronous generators, a significant level of detail and explanation is presented, all design choices are discussed, and the suggested ranges for the design parameters are shown. This results in a straightforward procedure that allows non-experienced designers to easily replicate the results and effectively enhance the comprehension of permanent magnet synchronous machines, and provides a guideline for researchers from other fields who may need to understand and perform a synchronous generator design. To show the effectiveness of the proposed design procedure, a PM generator is designed, and the results are compared with a finite element simulation, showing good accuracy.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12060384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12060384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Thorough Procedure to Design Surface-Mounted Permanent Magnet Synchronous Generators
This paper sets forth a thorough procedure to design surface-mounted permanent magnet synchronous generators. Since synchronous generators generate the majority of electrical energy, their relevance in society nowadays is substantial. As a consequence, the methodology to design these electrical machines also holds great importance. However, even though a considerable amount of works addresses the matter, it is difficult to find a complete and thoroughly explained design procedure. The proposed method is based on analytical equations to fully consider PM generator fundamentals with a few simplifications, which implies in a considerable number of design equations and parameters. Differently from most papers on the design of PM synchronous generators, a significant level of detail and explanation is presented, all design choices are discussed, and the suggested ranges for the design parameters are shown. This results in a straightforward procedure that allows non-experienced designers to easily replicate the results and effectively enhance the comprehension of permanent magnet synchronous machines, and provides a guideline for researchers from other fields who may need to understand and perform a synchronous generator design. To show the effectiveness of the proposed design procedure, a PM generator is designed, and the results are compared with a finite element simulation, showing good accuracy.