通过嵌段共聚物自组装组织的发光分子自旋的可调量子相干性

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-06-04 DOI:10.1002/qute.202400064
Liman Hou, Yu-Shuang Zhang, Yipeng Zhang, Shang-Da Jiang, Mingfeng Wang
{"title":"通过嵌段共聚物自组装组织的发光分子自旋的可调量子相干性","authors":"Liman Hou,&nbsp;Yu-Shuang Zhang,&nbsp;Yipeng Zhang,&nbsp;Shang-Da Jiang,&nbsp;Mingfeng Wang","doi":"10.1002/qute.202400064","DOIUrl":null,"url":null,"abstract":"<p>Electronic or nuclear spins represent promising candidates of qubits for applications in quantum information technologies and spintronic devices. However, it remains a challenge to achieve scalable and spatially defined organization of a large number of spins as qubits, which is essential in the feasible fabrication of quantum circuits. We report a strategy of block copolymer self-assembly to organize molecular spins as qubits across molecular to micro-/nano-scales in polymeric films of organic luminescent radicals centered in star-like block copolymers. We have achieved not only scalable and spatially defined organization of the molecular spins in polymeric films with long-range periodic ordering but also controllable spin-lattice relaxation dynamics and spin coherence lifetimes that can be finely tuned by the domain sizes and rigidities of the polymeric matrices.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Quantum Coherence of Luminescent Molecular Spins Organized via Block Copolymer Self-Assembly\",\"authors\":\"Liman Hou,&nbsp;Yu-Shuang Zhang,&nbsp;Yipeng Zhang,&nbsp;Shang-Da Jiang,&nbsp;Mingfeng Wang\",\"doi\":\"10.1002/qute.202400064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electronic or nuclear spins represent promising candidates of qubits for applications in quantum information technologies and spintronic devices. However, it remains a challenge to achieve scalable and spatially defined organization of a large number of spins as qubits, which is essential in the feasible fabrication of quantum circuits. We report a strategy of block copolymer self-assembly to organize molecular spins as qubits across molecular to micro-/nano-scales in polymeric films of organic luminescent radicals centered in star-like block copolymers. We have achieved not only scalable and spatially defined organization of the molecular spins in polymeric films with long-range periodic ordering but also controllable spin-lattice relaxation dynamics and spin coherence lifetimes that can be finely tuned by the domain sizes and rigidities of the polymeric matrices.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

电子自旋或核自旋是量子信息技术和自旋电子器件中应用前景广阔的候选量子比特。然而,将大量自旋作为量子比特进行可扩展和空间定义的组织仍然是一项挑战,而这对于量子电路的可行制造至关重要。我们报告了一种嵌段共聚物自组装策略,在以星状嵌段共聚物为中心的有机发光基聚合物薄膜中,以分子到微米/纳米尺度组织分子自旋作为量子比特。我们不仅在具有长程周期有序性的聚合物薄膜中实现了可扩展和空间定义的分子自旋组织,而且还实现了可控的自旋晶格弛豫动力学和自旋相干寿命,这些都可以通过聚合物基质的畴尺寸和刚性进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable Quantum Coherence of Luminescent Molecular Spins Organized via Block Copolymer Self-Assembly

Electronic or nuclear spins represent promising candidates of qubits for applications in quantum information technologies and spintronic devices. However, it remains a challenge to achieve scalable and spatially defined organization of a large number of spins as qubits, which is essential in the feasible fabrication of quantum circuits. We report a strategy of block copolymer self-assembly to organize molecular spins as qubits across molecular to micro-/nano-scales in polymeric films of organic luminescent radicals centered in star-like block copolymers. We have achieved not only scalable and spatially defined organization of the molecular spins in polymeric films with long-range periodic ordering but also controllable spin-lattice relaxation dynamics and spin coherence lifetimes that can be finely tuned by the domain sizes and rigidities of the polymeric matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Back Cover: Universal Quantum Fisher Information and Simultaneous Occurrence of Landau-Class and Topological-Class Transitions in Non-Hermitian Jaynes-Cummings Models (Adv. Quantum Technol. 10/2024) Front Cover: Solid-State Qubit as an On-Chip Controller for Non-Classical Field States (Adv. Quantum Technol. 10/2024) Inside Front Cover: Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers (Adv. Quantum Technol. 10/2024) Issue Information (Adv. Quantum Technol. 10/2024) Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1