基于 YOLO 算法的编织机纱线目标检测

Long Li, Yujing Zhang, Jiajun Sheng, Zhuo Meng, Yize Sun
{"title":"基于 YOLO 算法的编织机纱线目标检测","authors":"Long Li, Yujing Zhang, Jiajun Sheng, Zhuo Meng, Yize Sun","doi":"10.1177/00405175241256385","DOIUrl":null,"url":null,"abstract":"Braiding machines occupy an important position in the textile industry. Aiming at the characteristics of high real-time requirements for yarn target detection in braiding machines, small yarn change curvature, and large background interference, based on the YOLOv7 algorithm model, the lightweight convolution GSConv and VoVGSCSP modules are used to replace the ELAN-H module in the YOLOv7 algorithm to reduce the complexity of the model and improve the detection speed. In order to solve the problems of confusing detection target categories and poor detection effect of targets with small curvature change, a new bounding box loss function, wise intersection over union loss, is introduced to solve the imbalance of sample quality and improve the robustness and generalization ability of the model. The ablation experiment proves that the added modules can be well fused together. The mean average precision, precision, recall, frames per second, and GFLOPs of the improved YOLOv7 are 92.2%, 93.1%, 89.7%, 123.6, and 89.9, respectively.","PeriodicalId":505915,"journal":{"name":"Textile Research Journal","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yarn target detection of a braiding machine based on the YOLO algorithm\",\"authors\":\"Long Li, Yujing Zhang, Jiajun Sheng, Zhuo Meng, Yize Sun\",\"doi\":\"10.1177/00405175241256385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Braiding machines occupy an important position in the textile industry. Aiming at the characteristics of high real-time requirements for yarn target detection in braiding machines, small yarn change curvature, and large background interference, based on the YOLOv7 algorithm model, the lightweight convolution GSConv and VoVGSCSP modules are used to replace the ELAN-H module in the YOLOv7 algorithm to reduce the complexity of the model and improve the detection speed. In order to solve the problems of confusing detection target categories and poor detection effect of targets with small curvature change, a new bounding box loss function, wise intersection over union loss, is introduced to solve the imbalance of sample quality and improve the robustness and generalization ability of the model. The ablation experiment proves that the added modules can be well fused together. The mean average precision, precision, recall, frames per second, and GFLOPs of the improved YOLOv7 are 92.2%, 93.1%, 89.7%, 123.6, and 89.9, respectively.\",\"PeriodicalId\":505915,\"journal\":{\"name\":\"Textile Research Journal\",\"volume\":\"1 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00405175241256385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00405175241256385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

编织机在纺织工业中占有重要地位。针对编织机纱线目标检测实时性要求高、纱线变化曲率小、背景干扰大等特点,在 YOLOv7 算法模型的基础上,采用轻量级卷积 GSConv 模块和 VoVGSCSP 模块替代 YOLOv7 算法中的 ELAN-H 模块,降低了模型的复杂度,提高了检测速度。针对检测目标类别混乱、曲率变化小的目标检测效果差等问题,引入了新的边界框损失函数--wise intersection over union loss,解决了样本质量不平衡的问题,提高了模型的鲁棒性和泛化能力。消融实验证明,添加的模块可以很好地融合在一起。改进后的 YOLOv7 的平均精度、精确度、召回率、每秒帧数和 GFLOPs 分别为 92.2%、93.1%、89.7%、123.6 和 89.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yarn target detection of a braiding machine based on the YOLO algorithm
Braiding machines occupy an important position in the textile industry. Aiming at the characteristics of high real-time requirements for yarn target detection in braiding machines, small yarn change curvature, and large background interference, based on the YOLOv7 algorithm model, the lightweight convolution GSConv and VoVGSCSP modules are used to replace the ELAN-H module in the YOLOv7 algorithm to reduce the complexity of the model and improve the detection speed. In order to solve the problems of confusing detection target categories and poor detection effect of targets with small curvature change, a new bounding box loss function, wise intersection over union loss, is introduced to solve the imbalance of sample quality and improve the robustness and generalization ability of the model. The ablation experiment proves that the added modules can be well fused together. The mean average precision, precision, recall, frames per second, and GFLOPs of the improved YOLOv7 are 92.2%, 93.1%, 89.7%, 123.6, and 89.9, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the effect of polydopamine cross-linked serine protease on anti-shrinkage finishing of wool using response surface methodology design Improved recyclability of the superbase ionic liquid [MTBNH][AcO] used in the lyocell fiber spinning process Modeling of fabric sewing break detection based on U-Net network A hollow carbonized kapok fiber/nano CoFe2O4 composite for broad bandwidth and enhanced microwave absorber Effects of bandage types on interface pressure in static positions and during walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1