Sofia Catalina Heredia-Guerrero, Marietheres Evers, S. Keppler, Marlene Schwarzfischer, Viktoria Fuhr, Hilka Rauert-Wunderlich, Anne Krügl, T. Nedeva, T. Grieb, Julia Pickert, Hanna Koch, Torsten Steinbrunn, Otto-Jonas Bayrhof, R. Bargou, Andreas Rosenwald, T. Stühmer, E. Leich
{"title":"多发性骨髓瘤中 IGF1R 基因突变的功能研究","authors":"Sofia Catalina Heredia-Guerrero, Marietheres Evers, S. Keppler, Marlene Schwarzfischer, Viktoria Fuhr, Hilka Rauert-Wunderlich, Anne Krügl, T. Nedeva, T. Grieb, Julia Pickert, Hanna Koch, Torsten Steinbrunn, Otto-Jonas Bayrhof, R. Bargou, Andreas Rosenwald, T. Stühmer, E. Leich","doi":"10.3390/cancers16112139","DOIUrl":null,"url":null,"abstract":"High expression of the receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) and RTK mutations are associated with high-risk/worse prognosis in multiple myeloma (MM). Combining the pIGF1R/pINSR inhibitor linsitinib with the proteasome inhibitor (PI) bortezomib seemed promising in a clinical trial, but IGF1R expression was not associated with therapy response. Because the oncogenic impact of IGF1R mutations is so far unknown, we investigated the functional impact of IGF1R mutations on survival signaling, viability/proliferation and survival response to therapy. We transfected four human myeloma cell lines (HMCLs) with IGF1RWT, IGF1RD1146N and IGF1RN1129S (Sleeping Beauty), generated CRISPR-Cas9 IGF1R knockouts in the HMCLs U-266 (IGF1RWT) and L-363 (IGF1RD1146N) and tested the anti-MM activity of linsitinib alone and in combination with the second-generation PI carfilzomib in seven HMCLs. IGF1R knockout entailed reduced proliferation. Upon IGF1R overexpression, survival signaling was moderately increased in all HCMLs and slightly affected by IGF1RN1129S in one HMCL, whereby the viability remained unaffected. Expression of IGF1RD1146N reduced pIGF1R-Y1135, especially under serum reduction, but did not impact downstream signaling. Linsitinib and carfilzomib showed enhanced anti-myeloma activity in six out of seven HMCL irrespective of the IGF1R mutation status. In conclusion, IGF1R mutations can impact IGF1R activation and/or downstream signaling, and a combination of linsitinib with carfilzomib might be a suitable therapeutic approach for MM patients potentially responsive to IGF1R blockade.","PeriodicalId":504676,"journal":{"name":"Cancers","volume":"87 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Investigation of IGF1R Mutations in Multiple Myeloma\",\"authors\":\"Sofia Catalina Heredia-Guerrero, Marietheres Evers, S. Keppler, Marlene Schwarzfischer, Viktoria Fuhr, Hilka Rauert-Wunderlich, Anne Krügl, T. Nedeva, T. Grieb, Julia Pickert, Hanna Koch, Torsten Steinbrunn, Otto-Jonas Bayrhof, R. Bargou, Andreas Rosenwald, T. Stühmer, E. Leich\",\"doi\":\"10.3390/cancers16112139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High expression of the receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) and RTK mutations are associated with high-risk/worse prognosis in multiple myeloma (MM). Combining the pIGF1R/pINSR inhibitor linsitinib with the proteasome inhibitor (PI) bortezomib seemed promising in a clinical trial, but IGF1R expression was not associated with therapy response. Because the oncogenic impact of IGF1R mutations is so far unknown, we investigated the functional impact of IGF1R mutations on survival signaling, viability/proliferation and survival response to therapy. We transfected four human myeloma cell lines (HMCLs) with IGF1RWT, IGF1RD1146N and IGF1RN1129S (Sleeping Beauty), generated CRISPR-Cas9 IGF1R knockouts in the HMCLs U-266 (IGF1RWT) and L-363 (IGF1RD1146N) and tested the anti-MM activity of linsitinib alone and in combination with the second-generation PI carfilzomib in seven HMCLs. IGF1R knockout entailed reduced proliferation. Upon IGF1R overexpression, survival signaling was moderately increased in all HCMLs and slightly affected by IGF1RN1129S in one HMCL, whereby the viability remained unaffected. Expression of IGF1RD1146N reduced pIGF1R-Y1135, especially under serum reduction, but did not impact downstream signaling. Linsitinib and carfilzomib showed enhanced anti-myeloma activity in six out of seven HMCL irrespective of the IGF1R mutation status. In conclusion, IGF1R mutations can impact IGF1R activation and/or downstream signaling, and a combination of linsitinib with carfilzomib might be a suitable therapeutic approach for MM patients potentially responsive to IGF1R blockade.\",\"PeriodicalId\":504676,\"journal\":{\"name\":\"Cancers\",\"volume\":\"87 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers16112139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cancers16112139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional Investigation of IGF1R Mutations in Multiple Myeloma
High expression of the receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) and RTK mutations are associated with high-risk/worse prognosis in multiple myeloma (MM). Combining the pIGF1R/pINSR inhibitor linsitinib with the proteasome inhibitor (PI) bortezomib seemed promising in a clinical trial, but IGF1R expression was not associated with therapy response. Because the oncogenic impact of IGF1R mutations is so far unknown, we investigated the functional impact of IGF1R mutations on survival signaling, viability/proliferation and survival response to therapy. We transfected four human myeloma cell lines (HMCLs) with IGF1RWT, IGF1RD1146N and IGF1RN1129S (Sleeping Beauty), generated CRISPR-Cas9 IGF1R knockouts in the HMCLs U-266 (IGF1RWT) and L-363 (IGF1RD1146N) and tested the anti-MM activity of linsitinib alone and in combination with the second-generation PI carfilzomib in seven HMCLs. IGF1R knockout entailed reduced proliferation. Upon IGF1R overexpression, survival signaling was moderately increased in all HCMLs and slightly affected by IGF1RN1129S in one HMCL, whereby the viability remained unaffected. Expression of IGF1RD1146N reduced pIGF1R-Y1135, especially under serum reduction, but did not impact downstream signaling. Linsitinib and carfilzomib showed enhanced anti-myeloma activity in six out of seven HMCL irrespective of the IGF1R mutation status. In conclusion, IGF1R mutations can impact IGF1R activation and/or downstream signaling, and a combination of linsitinib with carfilzomib might be a suitable therapeutic approach for MM patients potentially responsive to IGF1R blockade.