高熵合金 CrFeMnNiCo 及其子系统的机械性能和抗氢脆性

Qiu Xu, H. Guan, Shaosong Huang, Zhihong Zhong, Atsushi Yabuuchi, Koichi Sato
{"title":"高熵合金 CrFeMnNiCo 及其子系统的机械性能和抗氢脆性","authors":"Qiu Xu, H. Guan, Shaosong Huang, Zhihong Zhong, Atsushi Yabuuchi, Koichi Sato","doi":"10.1002/pssb.202400162","DOIUrl":null,"url":null,"abstract":"The effects of hydrogen on the mechanical properties of CrNiCo and CrFeNiCo medium‐entropy alloys (MEAs) and CrFeMnNiCo high‐entropy alloys (HEAs) are investigated. Although their total elongation is less than that of the commonly used stainless steel (SS) 316L (SS316L), the tensile strengths of HEAs and MEAs are 150–350 MPa higher than that of SS316L. Hydrogen charging up to 1400 appm (nominal concentration) does not affect the tensile strength of SS316L; however, it decreases the elongation by less than 20%. In contrast, hydrogen increases the tensile strength of MEAs and HEA, but has little effect on elongation. Among the MEAs and HEAs, CrNiCo exhibits the highest tensile strength and total elongation. No brittle fracture due to hydrogen is observed on the fracture surfaces of the H‐charged samples. However, nanotwin structures are more common in H‐charged MEAs and HEAs than in H‐uncharged MEAs and HEA. Additionally, the calculation results based on the first‐principles reveal for the first time that single vacancies or tiny vacancy clusters do not trap H in MEAs compared to HEAs, such that cracks due to H are unlikely to occur. Thus, the hydrogen embrittlement resistance of MEAs may be improved.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties and Hydrogen Embrittlement Resistance of the High‐Entropy Alloy CrFeMnNiCo and Its Subsystems\",\"authors\":\"Qiu Xu, H. Guan, Shaosong Huang, Zhihong Zhong, Atsushi Yabuuchi, Koichi Sato\",\"doi\":\"10.1002/pssb.202400162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of hydrogen on the mechanical properties of CrNiCo and CrFeNiCo medium‐entropy alloys (MEAs) and CrFeMnNiCo high‐entropy alloys (HEAs) are investigated. Although their total elongation is less than that of the commonly used stainless steel (SS) 316L (SS316L), the tensile strengths of HEAs and MEAs are 150–350 MPa higher than that of SS316L. Hydrogen charging up to 1400 appm (nominal concentration) does not affect the tensile strength of SS316L; however, it decreases the elongation by less than 20%. In contrast, hydrogen increases the tensile strength of MEAs and HEA, but has little effect on elongation. Among the MEAs and HEAs, CrNiCo exhibits the highest tensile strength and total elongation. No brittle fracture due to hydrogen is observed on the fracture surfaces of the H‐charged samples. However, nanotwin structures are more common in H‐charged MEAs and HEAs than in H‐uncharged MEAs and HEA. Additionally, the calculation results based on the first‐principles reveal for the first time that single vacancies or tiny vacancy clusters do not trap H in MEAs compared to HEAs, such that cracks due to H are unlikely to occur. Thus, the hydrogen embrittlement resistance of MEAs may be improved.\",\"PeriodicalId\":20107,\"journal\":{\"name\":\"physica status solidi (b)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (b)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202400162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了氢对铬镍钴和铬铁镍钴中熵合金(MEAs)以及铬铁镍钴高熵合金(HEAs)机械性能的影响。虽然它们的总伸长率低于常用的不锈钢 (SS) 316L (SS316L),但 HEAs 和 MEAs 的抗拉强度比 SS316L 高 150-350 兆帕。充氢至 1400 appm(标称浓度)不会影响 SS316L 的拉伸强度,但会使伸长率降低不到 20%。相比之下,氢会增加 MEA 和 HEA 的抗拉强度,但对伸长率影响不大。在 MEA 和 HEA 中,CrNiCo 的抗拉强度和总伸长率最高。在带氢样品的断裂面上没有观察到氢导致的脆性断裂。然而,与充氢的 MEA 和 HEA 相比,充氢的 MEA 和 HEA 中的纳米孪晶结构更为常见。此外,基于第一性原理的计算结果首次表明,与 HEA 相比,单个空位或微小空位簇不会在 MEA 中捕获 H,因此不太可能出现 H 导致的裂纹。因此,MEA 的抗氢脆性能可能会得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Properties and Hydrogen Embrittlement Resistance of the High‐Entropy Alloy CrFeMnNiCo and Its Subsystems
The effects of hydrogen on the mechanical properties of CrNiCo and CrFeNiCo medium‐entropy alloys (MEAs) and CrFeMnNiCo high‐entropy alloys (HEAs) are investigated. Although their total elongation is less than that of the commonly used stainless steel (SS) 316L (SS316L), the tensile strengths of HEAs and MEAs are 150–350 MPa higher than that of SS316L. Hydrogen charging up to 1400 appm (nominal concentration) does not affect the tensile strength of SS316L; however, it decreases the elongation by less than 20%. In contrast, hydrogen increases the tensile strength of MEAs and HEA, but has little effect on elongation. Among the MEAs and HEAs, CrNiCo exhibits the highest tensile strength and total elongation. No brittle fracture due to hydrogen is observed on the fracture surfaces of the H‐charged samples. However, nanotwin structures are more common in H‐charged MEAs and HEAs than in H‐uncharged MEAs and HEA. Additionally, the calculation results based on the first‐principles reveal for the first time that single vacancies or tiny vacancy clusters do not trap H in MEAs compared to HEAs, such that cracks due to H are unlikely to occur. Thus, the hydrogen embrittlement resistance of MEAs may be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1