分离地震振动源地力信号中的谐波

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2024-06-03 DOI:10.1190/geo2024-0070.1
Yimin Sun, Mohammed S. Almubarak, Hussain Marzooq
{"title":"分离地震振动源地力信号中的谐波","authors":"Yimin Sun, Mohammed S. Almubarak, Hussain Marzooq","doi":"10.1190/geo2024-0070.1","DOIUrl":null,"url":null,"abstract":"The ground-force signal of a Vibroseis truck is unavoidably contaminated by harmonics. To better characterize the subsurface, the fundamental mode in the ground-force signal is the preferred choice for the cross-correlation with raw seismic data measured in the field. We present a novel, efficient and effective harmonics decomposition method to separate different orders of harmonics in the ground-force signal. Our method first builds a mathematical model to describe different orders of harmonics in the ground-force signal by honoring the physical mechanism behind the harmonics generation, and then retrieves different orders of harmonics by solving overdetermined linear problems in the analytic-signal domain. The success of our method is demonstrated using both synthetic and field data examples.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating harmonics in the ground-force signal of a seismic vibratory source\",\"authors\":\"Yimin Sun, Mohammed S. Almubarak, Hussain Marzooq\",\"doi\":\"10.1190/geo2024-0070.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ground-force signal of a Vibroseis truck is unavoidably contaminated by harmonics. To better characterize the subsurface, the fundamental mode in the ground-force signal is the preferred choice for the cross-correlation with raw seismic data measured in the field. We present a novel, efficient and effective harmonics decomposition method to separate different orders of harmonics in the ground-force signal. Our method first builds a mathematical model to describe different orders of harmonics in the ground-force signal by honoring the physical mechanism behind the harmonics generation, and then retrieves different orders of harmonics by solving overdetermined linear problems in the analytic-signal domain. The success of our method is demonstrated using both synthetic and field data examples.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2024-0070.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2024-0070.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

震源车的地心引力信号不可避免地受到谐波污染。为了更好地描述地表下的特征,地心引力信号中的基模是与野外测量的原始地震数据进行交叉相关的首选。我们提出了一种新颖、高效和有效的谐波分解方法,用于分离地力信号中的不同阶次谐波。我们的方法首先建立一个数学模型,通过尊重谐波产生背后的物理机制来描述地力信号中的不同阶次谐波,然后通过求解解析信号域中的过确定线性问题来检索不同阶次的谐波。我们利用合成数据和现场数据实例证明了这一方法的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separating harmonics in the ground-force signal of a seismic vibratory source
The ground-force signal of a Vibroseis truck is unavoidably contaminated by harmonics. To better characterize the subsurface, the fundamental mode in the ground-force signal is the preferred choice for the cross-correlation with raw seismic data measured in the field. We present a novel, efficient and effective harmonics decomposition method to separate different orders of harmonics in the ground-force signal. Our method first builds a mathematical model to describe different orders of harmonics in the ground-force signal by honoring the physical mechanism behind the harmonics generation, and then retrieves different orders of harmonics by solving overdetermined linear problems in the analytic-signal domain. The success of our method is demonstrated using both synthetic and field data examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
Velocity model-based adapted meshes using optimal transport An Efficient Cascadic Multigrid Method with Regularization Technique for 3-D Electromagnetic Finite-Element Anisotropic Modelling Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network Non-stationary adaptive S-wave suppression of ocean bottom node data Method and application of sand body thickness prediction based on virtual sample-machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1