Bouchra Bargam, A. Boudhar, Christophe Kinnard, H. Bouamri, Karima Nifa, A. Chehbouni
{"title":"评估支持向量回归 (SVR) 和随机森林 (RF) 模型在摩洛哥一个数据稀缺流域的流量预测中的准确性","authors":"Bouchra Bargam, A. Boudhar, Christophe Kinnard, H. Bouamri, Karima Nifa, A. Chehbouni","doi":"10.1007/s42452-024-05994-z","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":517252,"journal":{"name":"Discover Applied Sciences","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco\",\"authors\":\"Bouchra Bargam, A. Boudhar, Christophe Kinnard, H. Bouamri, Karima Nifa, A. Chehbouni\",\"doi\":\"10.1007/s42452-024-05994-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":517252,\"journal\":{\"name\":\"Discover Applied Sciences\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42452-024-05994-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-024-05994-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco