{"title":"在初级数据科学课程中使用汇总表介绍主成分分析法","authors":"Jon‐Paul Paolino","doi":"10.1111/test.12375","DOIUrl":null,"url":null,"abstract":"This article presents a novel approach to introducing principal component analysis (PCA), using summary tables and descriptive statistics. Given its applicability across a variety of academic disciplines, this topic offers abundant opportunity for class discussion and activities. However, teaching PCA in an introductory class can be challenging due to the potential abstraction of multivariate datasets, and especially when students have a minimal background in statistics or data science. This method aims to help teachers bridge the gap between basic descriptive statistics and the more advanced concepts of PCA; this is done by disregarding mathematical optimization, while emphasizing the use of summary tables and the programming language R. The focus is on implementing this method in an introductory tertiary data science course; however, it may potentially be used in higher level courses, and across a variety of disciplines.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using summary tables to introduce principal component analysis in an elementary data science course\",\"authors\":\"Jon‐Paul Paolino\",\"doi\":\"10.1111/test.12375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel approach to introducing principal component analysis (PCA), using summary tables and descriptive statistics. Given its applicability across a variety of academic disciplines, this topic offers abundant opportunity for class discussion and activities. However, teaching PCA in an introductory class can be challenging due to the potential abstraction of multivariate datasets, and especially when students have a minimal background in statistics or data science. This method aims to help teachers bridge the gap between basic descriptive statistics and the more advanced concepts of PCA; this is done by disregarding mathematical optimization, while emphasizing the use of summary tables and the programming language R. The focus is on implementing this method in an introductory tertiary data science course; however, it may potentially be used in higher level courses, and across a variety of disciplines.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/test.12375\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12375","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Using summary tables to introduce principal component analysis in an elementary data science course
This article presents a novel approach to introducing principal component analysis (PCA), using summary tables and descriptive statistics. Given its applicability across a variety of academic disciplines, this topic offers abundant opportunity for class discussion and activities. However, teaching PCA in an introductory class can be challenging due to the potential abstraction of multivariate datasets, and especially when students have a minimal background in statistics or data science. This method aims to help teachers bridge the gap between basic descriptive statistics and the more advanced concepts of PCA; this is done by disregarding mathematical optimization, while emphasizing the use of summary tables and the programming language R. The focus is on implementing this method in an introductory tertiary data science course; however, it may potentially be used in higher level courses, and across a variety of disciplines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.