氧空位在纳米晶 ZrO2 相变和光吸收特性中的作用

Nanomaterials Pub Date : 2024-06-02 DOI:10.3390/nano14110967
Ouyang Jing, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang, Bo Yuan
{"title":"氧空位在纳米晶 ZrO2 相变和光吸收特性中的作用","authors":"Ouyang Jing, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang, Bo Yuan","doi":"10.3390/nano14110967","DOIUrl":null,"url":null,"abstract":"Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"24 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Oxygen Vacancies in Phase Transition and the Optical Absorption Properties within Nanocrystalline ZrO2\",\"authors\":\"Ouyang Jing, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang, Bo Yuan\",\"doi\":\"10.3390/nano14110967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"24 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14110967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14110967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不同的合成条件(酸性、中性和碱性)下,采用溶热法合成了氧化锆(ZrO2)纳米粒子。利用 X 射线衍射(XRD)和场发射扫描电子显微镜(FESEM)详细研究了相变和形貌特征。在这些条件下,晶体相结构和晶粒大小呈现出很大的差异。值得注意的是,酸性条件在 ZrO2 中形成了单斜相,而碱性条件则产生了四方相和单斜相的组合。相比之下,在中性条件下获得的 ZrO2 晶粒大小更加细化,800 °C 热处理后晶粒大小限制在 1 纳米范围内。与此同时,ZrO2 还发生了从单斜相到四方相的重要转变。此外,对 XPS 数据的严格检查和紫外可见光谱仪(UV-vis)分析表明,氧空位在相稳定过程中发挥了重要作用。ZrO2 中出现的新能带与纯单斜样品中观察到的固有能带形成了鲜明对比,而这些新能带正是这些氧空位造成的。这项研究为了解 ZrO2 中受氧空位影响的新能带、相稳定性和光吸收特性提供了宝贵的见解。此外,它还提出了氧化锆的创新能级模型,为其在不同技术领域的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Oxygen Vacancies in Phase Transition and the Optical Absorption Properties within Nanocrystalline ZrO2
Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications Anisotropic SmFe10V2 Bulk Magnets with Enhanced Coercivity via Ball Milling Process A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1