用一锅水热法制备高超级电容器性能的多层 MoS2

Nanomaterials Pub Date : 2024-06-02 DOI:10.3390/nano14110968
Qingling Jia, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen, Yongxing Zhang
{"title":"用一锅水热法制备高超级电容器性能的多层 MoS2","authors":"Qingling Jia, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen, Yongxing Zhang","doi":"10.3390/nano14110968","DOIUrl":null,"url":null,"abstract":"Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g−1 at 1 A g−1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"50 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance\",\"authors\":\"Qingling Jia, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen, Yongxing Zhang\",\"doi\":\"10.3390/nano14110968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g−1 at 1 A g−1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"50 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14110968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14110968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钼(MoS2)是一种典型的层状材料,在光电、催化、电子器件、传感器和超级电容器等多个领域都有重要应用。由于少层 MoS2 具有比表面积大、活性位点多和电子传输路径短等特点,在电化学领域开展了大量研究。然而,少层 MoS2 的制备是一项重大挑战。本研究提出了一种简单的单锅水热法合成少层 MoS2。此外,它还研究了不同量的硼氢化钠(NaBH4)作为剥离剂对 MoS2 层数的剥离效果。Na+ 离子作为碱金属离子,可以在层间插层,从而达到剥离 MoS2 的目的。此外,NaBH4 具有还原性,能有效促进 MoS2 金属相的形成。少层 MoS2 作为超级电容器的电极,具有 0.9 V 的宽电位窗口和 150 F g-1 的高比电容(1 A g-1)。这项研究为制备具有高电化学性能的少层二维材料提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance
Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g−1 at 1 A g−1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications Anisotropic SmFe10V2 Bulk Magnets with Enhanced Coercivity via Ball Milling Process A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1