{"title":"新型四重掺杂 BIMEVOX:Bi2V1-4x(铜镍铌钛)xO5.5-δ 系列的氧化还原稳定性和电学特性","authors":"Xingping Song, Mingze Zhang, Laijun Liu, Jungu Xu","doi":"10.1002/pssa.202300915","DOIUrl":null,"url":null,"abstract":"Bi2VO5.5‐based materials are well‐known oxide ion conductors owing to their exceptionally high ionic conductivity. However, their poor phase and redox stabilities under a reducing atmosphere hinder their practical application as electrolytes for solid oxide fuel cells. Here, a series of novel quadruple metal‐doped bismuth vanadium system materials Bi2V1−4x(CuNiNbTi)xO5.5−δ (0 ≤ x ≤ 0.1) are prepared through a traditional solid state reaction method, aiming to enhance the phase and redox stability under reducing atmosphere. The results reveal that multiple‐metal‐doping can stabilize the tetragonal phase of Bi2VO5.5 to room temperature and show good phase and structural stabilities under inert or high oxygen partial pressure atmospheres, as well as pure oxide ion conduction which is slightly lower than that of the parent material. However, under a reducing environment, the Bi2V1−4x(CuNiNbTi)xO5.5−δ materials would still undergo a phase decomposition, yielding elemental bismuth impurity, and introducing strong electronic conduction. Thus, how to improve the phase and redox stabilities under the reducing atmosphere of the Bi2VO5.5‐based materials is still the endeavor direction in the future.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox Stability and Electrical Properties of a Series of Novel Quadruple Dopant BIMEVOX: Bi2V1−4x(CuNiNbTi)xO5.5−δ\",\"authors\":\"Xingping Song, Mingze Zhang, Laijun Liu, Jungu Xu\",\"doi\":\"10.1002/pssa.202300915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi2VO5.5‐based materials are well‐known oxide ion conductors owing to their exceptionally high ionic conductivity. However, their poor phase and redox stabilities under a reducing atmosphere hinder their practical application as electrolytes for solid oxide fuel cells. Here, a series of novel quadruple metal‐doped bismuth vanadium system materials Bi2V1−4x(CuNiNbTi)xO5.5−δ (0 ≤ x ≤ 0.1) are prepared through a traditional solid state reaction method, aiming to enhance the phase and redox stability under reducing atmosphere. The results reveal that multiple‐metal‐doping can stabilize the tetragonal phase of Bi2VO5.5 to room temperature and show good phase and structural stabilities under inert or high oxygen partial pressure atmospheres, as well as pure oxide ion conduction which is slightly lower than that of the parent material. However, under a reducing environment, the Bi2V1−4x(CuNiNbTi)xO5.5−δ materials would still undergo a phase decomposition, yielding elemental bismuth impurity, and introducing strong electronic conduction. Thus, how to improve the phase and redox stabilities under the reducing atmosphere of the Bi2VO5.5‐based materials is still the endeavor direction in the future.\",\"PeriodicalId\":20150,\"journal\":{\"name\":\"physica status solidi (a)\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (a)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redox Stability and Electrical Properties of a Series of Novel Quadruple Dopant BIMEVOX: Bi2V1−4x(CuNiNbTi)xO5.5−δ
Bi2VO5.5‐based materials are well‐known oxide ion conductors owing to their exceptionally high ionic conductivity. However, their poor phase and redox stabilities under a reducing atmosphere hinder their practical application as electrolytes for solid oxide fuel cells. Here, a series of novel quadruple metal‐doped bismuth vanadium system materials Bi2V1−4x(CuNiNbTi)xO5.5−δ (0 ≤ x ≤ 0.1) are prepared through a traditional solid state reaction method, aiming to enhance the phase and redox stability under reducing atmosphere. The results reveal that multiple‐metal‐doping can stabilize the tetragonal phase of Bi2VO5.5 to room temperature and show good phase and structural stabilities under inert or high oxygen partial pressure atmospheres, as well as pure oxide ion conduction which is slightly lower than that of the parent material. However, under a reducing environment, the Bi2V1−4x(CuNiNbTi)xO5.5−δ materials would still undergo a phase decomposition, yielding elemental bismuth impurity, and introducing strong electronic conduction. Thus, how to improve the phase and redox stabilities under the reducing atmosphere of the Bi2VO5.5‐based materials is still the endeavor direction in the future.