Chuan Jiang Huang , Gang Wang , Siyu Chen , Jingsong Guo , Fangli Qiao
{"title":"适用于所有天空的宽带海洋表面反照率有效参数化","authors":"Chuan Jiang Huang , Gang Wang , Siyu Chen , Jingsong Guo , Fangli Qiao","doi":"10.1016/j.ocemod.2024.102394","DOIUrl":null,"url":null,"abstract":"<div><p>The ocean surface albedo (OSA) is an important parameter in ocean and climate models for air-sea heat flux calculations. Current OSA schemes are either too simple, making them only suitable for clear sky conditions, or too complex, because they depend on parameters that are not often measured in conventional ocean observations. Using radiation observations at a fixed offshore platform, we propose a simple but effective parameterization scheme of OSA, in which the broadband OSA is an analytical function of both the solar zenith angle and atmospheric transparency. It depends only on the downward shortwave radiation measured at the ocean surface and applies to all sky conditions. During our 15-month radiation observations, the correlation coefficient between the calculated OSA and the observations reached 0.90 for all skies, and the root mean square deviation was 0.0130. Three other OSA observation datasets are also introduced to verify this scheme.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000817/pdfft?md5=80eb093a72adfe9fd300c9a2eae170df&pid=1-s2.0-S1463500324000817-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An effective parameterization of broadband ocean surface albedo applicable to all skies\",\"authors\":\"Chuan Jiang Huang , Gang Wang , Siyu Chen , Jingsong Guo , Fangli Qiao\",\"doi\":\"10.1016/j.ocemod.2024.102394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ocean surface albedo (OSA) is an important parameter in ocean and climate models for air-sea heat flux calculations. Current OSA schemes are either too simple, making them only suitable for clear sky conditions, or too complex, because they depend on parameters that are not often measured in conventional ocean observations. Using radiation observations at a fixed offshore platform, we propose a simple but effective parameterization scheme of OSA, in which the broadband OSA is an analytical function of both the solar zenith angle and atmospheric transparency. It depends only on the downward shortwave radiation measured at the ocean surface and applies to all sky conditions. During our 15-month radiation observations, the correlation coefficient between the calculated OSA and the observations reached 0.90 for all skies, and the root mean square deviation was 0.0130. Three other OSA observation datasets are also introduced to verify this scheme.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000817/pdfft?md5=80eb093a72adfe9fd300c9a2eae170df&pid=1-s2.0-S1463500324000817-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324000817\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000817","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
海洋表面反照率(OSA)是海洋和气候模型计算海气热通量的重要参数。目前的 OSA 方案要么过于简单,只适用于晴朗的天空条件;要么过于复杂,因为它们依赖于常规海洋观测中不经常测量到的参数。利用固定海上平台的辐射观测,我们提出了一种简单而有效的 OSA 参数化方案,其中宽带 OSA 是太阳天顶角和大气透明度的解析函数。它只取决于在海洋表面测量到的向下短波辐射,适用于所有天空条件。在为期 15 个月的辐射观测中,所有天空的 OSA 计算值与观测值的相关系数都达到了 0.90,均方根偏差为 0.0130。为了验证这一方案,我们还引入了另外三个 OSA 观测数据集。
An effective parameterization of broadband ocean surface albedo applicable to all skies
The ocean surface albedo (OSA) is an important parameter in ocean and climate models for air-sea heat flux calculations. Current OSA schemes are either too simple, making them only suitable for clear sky conditions, or too complex, because they depend on parameters that are not often measured in conventional ocean observations. Using radiation observations at a fixed offshore platform, we propose a simple but effective parameterization scheme of OSA, in which the broadband OSA is an analytical function of both the solar zenith angle and atmospheric transparency. It depends only on the downward shortwave radiation measured at the ocean surface and applies to all sky conditions. During our 15-month radiation observations, the correlation coefficient between the calculated OSA and the observations reached 0.90 for all skies, and the root mean square deviation was 0.0130. Three other OSA observation datasets are also introduced to verify this scheme.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.