Dawei Ni , Yuhan Wei , Yulei Zhang , Tarek A.A. Moussa , Wenli Zhang , Wanmeng Mu
{"title":"从噬菌体细菌 SJW1-29 中鉴定 D-甘露糖 2-酰亚胺酶的生化特性,以实现 D-葡萄糖到 D-甘露糖的高效生物转化","authors":"Dawei Ni , Yuhan Wei , Yulei Zhang , Tarek A.A. Moussa , Wenli Zhang , Wanmeng Mu","doi":"10.1016/j.enzmictec.2024.110465","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to <em>N</em>-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from <em>Cytophagaceae</em> bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported <em>R. slithyformis</em> MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The <em>K</em><sub>m</sub>, <em>k</em><sub>cat</sub>, and <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> on D-glucose were measured to be 194.9 mM, 2.72 s<sup>−1</sup>, and 0.014 mM<sup>−1</sup> s<sup>−1</sup>, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical identification of D-mannose 2-epimerase from Cytophagaceae bacterium SJW1-29 for efficient bioconversion of D-glucose to D-mannose\",\"authors\":\"Dawei Ni , Yuhan Wei , Yulei Zhang , Tarek A.A. Moussa , Wenli Zhang , Wanmeng Mu\",\"doi\":\"10.1016/j.enzmictec.2024.110465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to <em>N</em>-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from <em>Cytophagaceae</em> bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported <em>R. slithyformis</em> MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The <em>K</em><sub>m</sub>, <em>k</em><sub>cat</sub>, and <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> on D-glucose were measured to be 194.9 mM, 2.72 s<sup>−1</sup>, and 0.014 mM<sup>−1</sup> s<sup>−1</sup>, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000723\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000723","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biochemical identification of D-mannose 2-epimerase from Cytophagaceae bacterium SJW1-29 for efficient bioconversion of D-glucose to D-mannose
Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to N-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from Cytophagaceae bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported R. slithyformis MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The Km, kcat, and kcat/Km on D-glucose were measured to be 194.9 mM, 2.72 s−1, and 0.014 mM−1 s−1, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.