动脉壁中的蛋白质硝化:心血管疾病的诱因?

Michael J. Davies
{"title":"动脉壁中的蛋白质硝化:心血管疾病的诱因?","authors":"Michael J. Davies","doi":"10.1016/j.rbc.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><p>Nitration is a well-established post-translational modification of selected free amino acids, as well as proteins, lipids and nucleic acids. Considerable evidence is now available for the formation of long-lived species containing an added –NO<sub>2</sub> function on the aromatic rings of tyrosine (Tyr) and tryptophan (Trp) residues (both free and on proteins), to purine nucleobases (and particularly guanine), and to unsaturated lipids within biological systems. Multiple potential mechanisms that give rise to these nitrated species have been identified including reactions of the potent oxidant and nitrating species peroxynitrous acid/peroxynitrite (ONOOH/ONOO<sup>−</sup>) and via oxidative reactions of heme proteins/enzymes (e.g. peroxidases) with the biologically-relevant anion nitrite (NO<sub>2</sub><sup>−</sup>). <sup>•</sup>NO<sub>2</sub> is likely to be a key intermediate, though involvement of HNO<sub>2</sub>, NO<sub>2</sub><sup>+</sup> and NO<sub>2</sub>Cl has also been proposed. The resulting nitrated products have been widely employed as qualitative or quantitative biomarkers of nitration events <em>in vitro</em> and <em>in vivo</em>. Increasing evidence suggests that at least some of these products are not benign species, with evidence for pro-inflammatory actions. In this article the mechanisms and role of nitration, and particularly that on proteins within the artery wall, in cardiovascular disease is discussed, together with emerging data suggesting that low levels of nitration occur within biological systems in the absence of added oxidants. Both stimulated and endogenous nitration may play a role in modulating cell signaling, alter the structure and function of both cellular- and extracellular proteins, and contribute to various inflammatory pathologies, including atherosclerosis.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000130/pdfft?md5=145e5634e1cd27124e29854f3c750e6b&pid=1-s2.0-S2773176624000130-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Protein nitration in the artery wall: A contributor to cardiovascular disease?\",\"authors\":\"Michael J. Davies\",\"doi\":\"10.1016/j.rbc.2024.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitration is a well-established post-translational modification of selected free amino acids, as well as proteins, lipids and nucleic acids. Considerable evidence is now available for the formation of long-lived species containing an added –NO<sub>2</sub> function on the aromatic rings of tyrosine (Tyr) and tryptophan (Trp) residues (both free and on proteins), to purine nucleobases (and particularly guanine), and to unsaturated lipids within biological systems. Multiple potential mechanisms that give rise to these nitrated species have been identified including reactions of the potent oxidant and nitrating species peroxynitrous acid/peroxynitrite (ONOOH/ONOO<sup>−</sup>) and via oxidative reactions of heme proteins/enzymes (e.g. peroxidases) with the biologically-relevant anion nitrite (NO<sub>2</sub><sup>−</sup>). <sup>•</sup>NO<sub>2</sub> is likely to be a key intermediate, though involvement of HNO<sub>2</sub>, NO<sub>2</sub><sup>+</sup> and NO<sub>2</sub>Cl has also been proposed. The resulting nitrated products have been widely employed as qualitative or quantitative biomarkers of nitration events <em>in vitro</em> and <em>in vivo</em>. Increasing evidence suggests that at least some of these products are not benign species, with evidence for pro-inflammatory actions. In this article the mechanisms and role of nitration, and particularly that on proteins within the artery wall, in cardiovascular disease is discussed, together with emerging data suggesting that low levels of nitration occur within biological systems in the absence of added oxidants. Both stimulated and endogenous nitration may play a role in modulating cell signaling, alter the structure and function of both cellular- and extracellular proteins, and contribute to various inflammatory pathologies, including atherosclerosis.</p></div>\",\"PeriodicalId\":101065,\"journal\":{\"name\":\"Redox Biochemistry and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000130/pdfft?md5=145e5634e1cd27124e29854f3c750e6b&pid=1-s2.0-S2773176624000130-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biochemistry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176624000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硝化作用是对某些游离氨基酸以及蛋白质、脂类和核酸进行的一种行之有效的翻译后修饰。目前已有大量证据表明,在生物系统中,酪氨酸(Tyr)和色氨酸(Trp)残基(游离的和蛋白质上的)、嘌呤核碱基(尤其是鸟嘌呤)和不饱和脂质的芳香环上会形成含有附加 -NO2 功能的长效物质。已确定了产生这些硝化物种的多种潜在机制,包括强氧化剂和硝化物种过氧化亚氮酸/过氧化亚氮酸(ONOOH/ONOO-)的反应,以及血红素蛋白/酶(如过氧化物酶)与生物相关阴离子亚硝酸盐(NO2-)的氧化反应。-NO2 很可能是一个关键的中间产物,但也有人认为 HNO2、NO2+ 和 NO2Cl 也参与了反应。由此产生的硝化产物已被广泛用作体外和体内硝化事件的定性或定量生物标记。越来越多的证据表明,这些产物中至少有一些不是良性的,有证据表明它们具有促炎作用。本文讨论了硝化在心血管疾病中的机制和作用,特别是动脉壁蛋白质上的硝化,以及新出现的数据表明,在没有添加氧化剂的情况下,生物系统中也会发生低水平的硝化。受刺激的硝化和内源性硝化都可能在调节细胞信号、改变细胞内外蛋白质的结构和功能方面发挥作用,并导致各种炎症性病变,包括动脉粥样硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein nitration in the artery wall: A contributor to cardiovascular disease?

Nitration is a well-established post-translational modification of selected free amino acids, as well as proteins, lipids and nucleic acids. Considerable evidence is now available for the formation of long-lived species containing an added –NO2 function on the aromatic rings of tyrosine (Tyr) and tryptophan (Trp) residues (both free and on proteins), to purine nucleobases (and particularly guanine), and to unsaturated lipids within biological systems. Multiple potential mechanisms that give rise to these nitrated species have been identified including reactions of the potent oxidant and nitrating species peroxynitrous acid/peroxynitrite (ONOOH/ONOO) and via oxidative reactions of heme proteins/enzymes (e.g. peroxidases) with the biologically-relevant anion nitrite (NO2). NO2 is likely to be a key intermediate, though involvement of HNO2, NO2+ and NO2Cl has also been proposed. The resulting nitrated products have been widely employed as qualitative or quantitative biomarkers of nitration events in vitro and in vivo. Increasing evidence suggests that at least some of these products are not benign species, with evidence for pro-inflammatory actions. In this article the mechanisms and role of nitration, and particularly that on proteins within the artery wall, in cardiovascular disease is discussed, together with emerging data suggesting that low levels of nitration occur within biological systems in the absence of added oxidants. Both stimulated and endogenous nitration may play a role in modulating cell signaling, alter the structure and function of both cellular- and extracellular proteins, and contribute to various inflammatory pathologies, including atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perceptions of peroxynitrite reactivity – Then and now Boronate-based bioactive compounds activated by peroxynitrite and hydrogen peroxide Reaction of peroxynitrite with thiols, hydrogen sulfide and persulfides Peroxynitrite: A tale of two radicals NADPH oxidase 5: Where are we now and which way to proceed?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1