用于 MNIST 数字识别的增强型卷积神经网络

Ahmed Gamal, Mohammed El Saeed, Mohanad Deif, Rania Elgohary
{"title":"用于 MNIST 数字识别的增强型卷积神经网络","authors":"Ahmed Gamal, Mohammed El Saeed, Mohanad Deif, Rania Elgohary","doi":"10.21608/iiis.2024.357780","DOIUrl":null,"url":null,"abstract":":This study addresses the ongoing pursuit of achieving optimal performance in digit recognition tasks, focusing on the widely studied MNIST dataset. Our motivation stems from the challenge of accurately classifying the remaining 1% of images, despite the relatively high 99% accuracy achieved by existing models. In this work, we present a simplified approach to convolutional neural network (CNN) architecture, aiming to streamline model complexity while maintaining or even enhancing performance. Unlike previous approaches, our methodology involves utilizing only two CNN layers with fewer filters, resulting in a reduction in model parameters and learning time. Through rigorous experimentation and evaluation, we demonstrate that our streamlined CNN architecture yields competitive results. Our findings underscore the importance of exploring alternative model architectures and optimization techniques to achieve state-of-the-art performance in digit recognition tasks.","PeriodicalId":518706,"journal":{"name":"International Integrated Intelligent Systems","volume":"50 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Convolutional Neural Networks for MNIST Digit Recognition\",\"authors\":\"Ahmed Gamal, Mohammed El Saeed, Mohanad Deif, Rania Elgohary\",\"doi\":\"10.21608/iiis.2024.357780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":This study addresses the ongoing pursuit of achieving optimal performance in digit recognition tasks, focusing on the widely studied MNIST dataset. Our motivation stems from the challenge of accurately classifying the remaining 1% of images, despite the relatively high 99% accuracy achieved by existing models. In this work, we present a simplified approach to convolutional neural network (CNN) architecture, aiming to streamline model complexity while maintaining or even enhancing performance. Unlike previous approaches, our methodology involves utilizing only two CNN layers with fewer filters, resulting in a reduction in model parameters and learning time. Through rigorous experimentation and evaluation, we demonstrate that our streamlined CNN architecture yields competitive results. Our findings underscore the importance of exploring alternative model architectures and optimization techniques to achieve state-of-the-art performance in digit recognition tasks.\",\"PeriodicalId\":518706,\"journal\":{\"name\":\"International Integrated Intelligent Systems\",\"volume\":\"50 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Integrated Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/iiis.2024.357780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Integrated Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/iiis.2024.357780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以广泛研究的 MNIST 数据集为重点,探讨在数字识别任务中实现最佳性能的持续追求。尽管现有模型的准确率已达到相对较高的 99%,但要对剩余 1% 的图像进行准确分类仍是一项挑战。在这项工作中,我们提出了一种简化卷积神经网络(CNN)架构的方法,旨在简化模型的复杂性,同时保持甚至提高性能。与以往的方法不同,我们的方法只使用了两层卷积神经网络和较少的滤波器,从而减少了模型参数和学习时间。通过严格的实验和评估,我们证明了我们的简化 CNN 架构能产生有竞争力的结果。我们的研究结果强调了探索替代模型架构和优化技术的重要性,以便在数字识别任务中实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Convolutional Neural Networks for MNIST Digit Recognition
:This study addresses the ongoing pursuit of achieving optimal performance in digit recognition tasks, focusing on the widely studied MNIST dataset. Our motivation stems from the challenge of accurately classifying the remaining 1% of images, despite the relatively high 99% accuracy achieved by existing models. In this work, we present a simplified approach to convolutional neural network (CNN) architecture, aiming to streamline model complexity while maintaining or even enhancing performance. Unlike previous approaches, our methodology involves utilizing only two CNN layers with fewer filters, resulting in a reduction in model parameters and learning time. Through rigorous experimentation and evaluation, we demonstrate that our streamlined CNN architecture yields competitive results. Our findings underscore the importance of exploring alternative model architectures and optimization techniques to achieve state-of-the-art performance in digit recognition tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Tumor Detection Using GLCM and Machine learning Techniques Cataract Disease Detection Using Pre-trained Models Enhanced Convolutional Neural Networks for MNIST Digit Recognition Real-time Driver Drowsiness Detection Using Deep Neural Networks Advancing Space Weather Forecasting: A Comparative Analysis of AI Techniques for Predicting Geomagnetic Storms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1