Anita, Mahiya Kulsoom, A. Yadav, Monu Kumar, K. Raw, Satgur Prasad, Narendra Kumar
{"title":"在制革污泥改良土壤中生长的大麻槿中重金属的积累和转移","authors":"Anita, Mahiya Kulsoom, A. Yadav, Monu Kumar, K. Raw, Satgur Prasad, Narendra Kumar","doi":"10.46488/nept.2024.v23i02.047","DOIUrl":null,"url":null,"abstract":"Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"50 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation and Translocation of Heavy Metals in Hibiscus cannabinus Grown in Tannery Sludge Amended Soil\",\"authors\":\"Anita, Mahiya Kulsoom, A. Yadav, Monu Kumar, K. Raw, Satgur Prasad, Narendra Kumar\",\"doi\":\"10.46488/nept.2024.v23i02.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.\",\"PeriodicalId\":18783,\"journal\":{\"name\":\"Nature Environment and Pollution Technology\",\"volume\":\"50 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Environment and Pollution Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46488/nept.2024.v23i02.047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i02.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
Accumulation and Translocation of Heavy Metals in Hibiscus cannabinus Grown in Tannery Sludge Amended Soil
Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment