空穴传输层对宽带隙透辉石相分离中埋藏界面的影响

Nanomaterials Pub Date : 2024-06-01 DOI:10.3390/nano14110963
Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li, Chuanxiao Xiao
{"title":"空穴传输层对宽带隙透辉石相分离中埋藏界面的影响","authors":"Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li, Chuanxiao Xiao","doi":"10.3390/nano14110963","DOIUrl":null,"url":null,"abstract":"Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"2 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation\",\"authors\":\"Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li, Chuanxiao Xiao\",\"doi\":\"10.3390/nano14110963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"2 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14110963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14110963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光诱导的相分离,尤其是在加入溴元素以拓宽带隙时,给过氧化物太阳能电池的稳定性和商业化带来了重大挑战。本研究探讨了空穴传输层,特别是聚[双(4-苯基)(2,4,6-三甲基苯基)胺(PTAA)和[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)对相分离动力学的影响。通过对埋藏界面的详细表征,我们证明了 Me-4PACz 可增强包晶石的光稳定性,其性能超过了 PTAA。利用原位开尔文探针力显微镜和定量纳米机械绘图技术进行的纳米级分析,阐明了相分离过程中埋藏界面的缺陷分布,突出了基底润湿性在包晶生长和界面完整性中的关键作用。通过整合这些表征技术,可以全面了解埋底界面对包晶石生长和相分离的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation
Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications Anisotropic SmFe10V2 Bulk Magnets with Enhanced Coercivity via Ball Milling Process A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1