{"title":"作为空气污染主动生物监测器的苔藓袋:理解现状、应用和关注问题","authors":"Sriroop Chaudhuri, Mimi Roy","doi":"10.46488/nept.2024.v23i02.019","DOIUrl":null,"url":null,"abstract":"Dual concerns involving the rise in airborne pollutant levels and bulging need to protect-preserve human health have propelled the search for innovative means for air quality monitoring to aid in evidence-based decision-making (pollution prevention-mitigation). In this regard, moss bags have gathered a great deal of attention as active biomonitors. In this reflective discourse, we systematically review the world literature to present a bird’s eye view of moss bag applications and advances while highlighting potential concerns. We begin with a brief note on mosses as biomonitors, highlighting the advantages of moss bags over the passive technique (native moss), other living organisms (lichens, vascular plants), and instrument-based measurements. A major strand of moss bag research involves urban ecosystem sustainability studies (e.g., street tunnels and canyons, parks), while others include event-specific monitoring and change detection (e.g., SARS-CoV-2 Lockdown), indoor-outdoor air quality assessment, and change detection in land use patterns. Recent advances include biomagnetic studies, radioisotopic investigations, and mobile applications. Efforts are currently underway to couple moss bag results with a suite of indicators [e.g., relative accumulation factor (RAF), contamination factor (CF), pollution load index (PLI), enrichment factor (EF)] and spatially map the results for holistic appraisal of environmental quality (hot spot detection). However, while moss bag innovations and applications continue to grow over time, we point to fundamental concerns/uncertainties (e.g., lack of concordance in operational procedures and parameterization, ideal species selection, moss vitality) that still need to be addressed by targeted case studies, before the moss results could be considered in regulatory interventions.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moss Bags as Active Biomonitors of Air Pollution: Current State of Understanding, Applications and Concerns\",\"authors\":\"Sriroop Chaudhuri, Mimi Roy\",\"doi\":\"10.46488/nept.2024.v23i02.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual concerns involving the rise in airborne pollutant levels and bulging need to protect-preserve human health have propelled the search for innovative means for air quality monitoring to aid in evidence-based decision-making (pollution prevention-mitigation). In this regard, moss bags have gathered a great deal of attention as active biomonitors. In this reflective discourse, we systematically review the world literature to present a bird’s eye view of moss bag applications and advances while highlighting potential concerns. We begin with a brief note on mosses as biomonitors, highlighting the advantages of moss bags over the passive technique (native moss), other living organisms (lichens, vascular plants), and instrument-based measurements. A major strand of moss bag research involves urban ecosystem sustainability studies (e.g., street tunnels and canyons, parks), while others include event-specific monitoring and change detection (e.g., SARS-CoV-2 Lockdown), indoor-outdoor air quality assessment, and change detection in land use patterns. Recent advances include biomagnetic studies, radioisotopic investigations, and mobile applications. Efforts are currently underway to couple moss bag results with a suite of indicators [e.g., relative accumulation factor (RAF), contamination factor (CF), pollution load index (PLI), enrichment factor (EF)] and spatially map the results for holistic appraisal of environmental quality (hot spot detection). However, while moss bag innovations and applications continue to grow over time, we point to fundamental concerns/uncertainties (e.g., lack of concordance in operational procedures and parameterization, ideal species selection, moss vitality) that still need to be addressed by targeted case studies, before the moss results could be considered in regulatory interventions.\",\"PeriodicalId\":18783,\"journal\":{\"name\":\"Nature Environment and Pollution Technology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Environment and Pollution Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46488/nept.2024.v23i02.019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Environment and Pollution Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46488/nept.2024.v23i02.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
Moss Bags as Active Biomonitors of Air Pollution: Current State of Understanding, Applications and Concerns
Dual concerns involving the rise in airborne pollutant levels and bulging need to protect-preserve human health have propelled the search for innovative means for air quality monitoring to aid in evidence-based decision-making (pollution prevention-mitigation). In this regard, moss bags have gathered a great deal of attention as active biomonitors. In this reflective discourse, we systematically review the world literature to present a bird’s eye view of moss bag applications and advances while highlighting potential concerns. We begin with a brief note on mosses as biomonitors, highlighting the advantages of moss bags over the passive technique (native moss), other living organisms (lichens, vascular plants), and instrument-based measurements. A major strand of moss bag research involves urban ecosystem sustainability studies (e.g., street tunnels and canyons, parks), while others include event-specific monitoring and change detection (e.g., SARS-CoV-2 Lockdown), indoor-outdoor air quality assessment, and change detection in land use patterns. Recent advances include biomagnetic studies, radioisotopic investigations, and mobile applications. Efforts are currently underway to couple moss bag results with a suite of indicators [e.g., relative accumulation factor (RAF), contamination factor (CF), pollution load index (PLI), enrichment factor (EF)] and spatially map the results for holistic appraisal of environmental quality (hot spot detection). However, while moss bag innovations and applications continue to grow over time, we point to fundamental concerns/uncertainties (e.g., lack of concordance in operational procedures and parameterization, ideal species selection, moss vitality) that still need to be addressed by targeted case studies, before the moss results could be considered in regulatory interventions.
期刊介绍:
The journal was established initially by the name of Journal of Environment and Pollution in 1994, whose name was later changed to Nature Environment and Pollution Technology in the year 2002. It has now become an open access online journal from the year 2017 with ISSN: 2395-3454 (Online). The journal was established especially to promote the cause for environment and to cater the need for rapid dissemination of the vast scientific and technological data generated in this field. It is a part of many reputed international indexing and abstracting agencies. The Journal has evoked a highly encouraging response among the researchers, scientists and technocrats. It has a reputed International Editorial Board and publishes peer reviewed papers. The Journal has also been approved by UGC (India). The journal publishes both original research and review papers. The ideology and scope of the Journal includes the following. -Monitoring, control and management of air, water, soil and noise pollution -Solid waste management -Industrial hygiene and occupational health -Biomedical aspects of pollution -Toxicological studies -Radioactive pollution and radiation effects -Wastewater treatment and recycling etc. -Environmental modelling -Biodiversity and conservation -Dynamics and behaviour of chemicals in environment -Natural resources, wildlife, forests and wetlands etc. -Environmental laws and legal aspects -Environmental economics -Any other topic related to environment