Renata Smulik-Izydorczyk , Jakub Pięta , Radosław Michalski , Monika Rola , Karol Kramkowski , Angelika Artelska , Jacek Zielonka , Adam Bartłomiej Sikora
{"title":"释放 HNO 的化合物的化学性质","authors":"Renata Smulik-Izydorczyk , Jakub Pięta , Radosław Michalski , Monika Rola , Karol Kramkowski , Angelika Artelska , Jacek Zielonka , Adam Bartłomiej Sikora","doi":"10.1016/j.rbc.2024.100031","DOIUrl":null,"url":null,"abstract":"<div><p><strong>HNO</strong> (azanone or nitroxyl), formally a product of the one-electron reduction of a nitric oxide, exhibits diverse and unique biological activity. The chemistry, biochemistry, and biological/pharmacological effects of <strong>H</strong><strong>N</strong><strong>O</strong> have been studied extensively. Due to rapid dimerization and hence short lifetime in solutions, in chemical and biological studies <strong>HNO</strong> is typically produced <em>in situ</em> from its thermal donors. To date, a great variety of chemical <strong>HNO</strong> donors have been synthesized, characterized, and utilized in biological studies. Here, we discuss the chemistry of <strong>HNO</strong>-releasing compounds, with the emphasis on the complexity of the proposed reaction mechanisms.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":"8 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000129/pdfft?md5=d41d616194237ca22b5077ab1b087f18&pid=1-s2.0-S2773176624000129-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The chemistry of HNO-releasing compounds\",\"authors\":\"Renata Smulik-Izydorczyk , Jakub Pięta , Radosław Michalski , Monika Rola , Karol Kramkowski , Angelika Artelska , Jacek Zielonka , Adam Bartłomiej Sikora\",\"doi\":\"10.1016/j.rbc.2024.100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>HNO</strong> (azanone or nitroxyl), formally a product of the one-electron reduction of a nitric oxide, exhibits diverse and unique biological activity. The chemistry, biochemistry, and biological/pharmacological effects of <strong>H</strong><strong>N</strong><strong>O</strong> have been studied extensively. Due to rapid dimerization and hence short lifetime in solutions, in chemical and biological studies <strong>HNO</strong> is typically produced <em>in situ</em> from its thermal donors. To date, a great variety of chemical <strong>HNO</strong> donors have been synthesized, characterized, and utilized in biological studies. Here, we discuss the chemistry of <strong>HNO</strong>-releasing compounds, with the emphasis on the complexity of the proposed reaction mechanisms.</p></div>\",\"PeriodicalId\":101065,\"journal\":{\"name\":\"Redox Biochemistry and Chemistry\",\"volume\":\"8 \",\"pages\":\"Article 100031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000129/pdfft?md5=d41d616194237ca22b5077ab1b087f18&pid=1-s2.0-S2773176624000129-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biochemistry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773176624000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176624000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HNO (azanone or nitroxyl), formally a product of the one-electron reduction of a nitric oxide, exhibits diverse and unique biological activity. The chemistry, biochemistry, and biological/pharmacological effects of HNO have been studied extensively. Due to rapid dimerization and hence short lifetime in solutions, in chemical and biological studies HNO is typically produced in situ from its thermal donors. To date, a great variety of chemical HNO donors have been synthesized, characterized, and utilized in biological studies. Here, we discuss the chemistry of HNO-releasing compounds, with the emphasis on the complexity of the proposed reaction mechanisms.