不同浓度的富氢水对大嘴鲈鱼(Micropterus salmoides)生长性能、消化能力、抗氧化能力、葡萄糖代谢途径、mTOR 信号途径和肠道微生物群的影响

IF 2.1 3区 农林科学 Q2 FISHERIES Fishes Pub Date : 2024-06-01 DOI:10.3390/fishes9060210
Yin Yuan, Huixiang Li, Songwei Chen, Yongchun Lin, Jiangyuan Peng, Junru Hu, Yongsheng Wang
{"title":"不同浓度的富氢水对大嘴鲈鱼(Micropterus salmoides)生长性能、消化能力、抗氧化能力、葡萄糖代谢途径、mTOR 信号途径和肠道微生物群的影响","authors":"Yin Yuan, Huixiang Li, Songwei Chen, Yongchun Lin, Jiangyuan Peng, Junru Hu, Yongsheng Wang","doi":"10.3390/fishes9060210","DOIUrl":null,"url":null,"abstract":"Hydrogen−rich water (HRW) is widely recognized for its growth promoting, antioxidant, and anti−inflammatory properties. However, little is known about the role of HRW in aquaculture. This study aims to investigate how different concentrations of HRW affect the growth performance, digestive ability, antioxidant capacity, mTOR signaling pathway, and gut microbiota of juvenile largemouth bass. We randomly assigned 360 fish (13.73 ± 0.1 g) to three treatments. The control group was maintained in regular water, while the treatment groups were treated with different concentrations of H2 dissolved in water, which were H1 (179.65 ± 31.95 ppb) and H2 (280.65 ± 64.43 ppb), respectively. Through an analysis of the three treatments, it was found that H1 significantly increased the final body weight, weight gain rate, specific growth rate, and survival rate, and reduced the feed conversion ratio (p < 0.05). In addition, the trypsin activity was significantly increased in the intestine (p < 0.05), and the expression of genes related to the glucose metabolism (pk and pepck) and mTOR (tor, akt, s6k1, 4ebp1, and ampka) signaling pathways were significantly increased in the liver in H1 (p < 0.05). The relative abundance of Blautia in the gut microbiota (p < 0.05) was significantly increased in H1. Therefore, these results indicated that H1 can significantly improve growth performance, promote intestinal digestion, activate the glucose metabolism pathway and mTOR signaling pathway, and increase the abundance of beneficial bacteria in the gut of largemouth bass. These findings provided valuable support for the application of HRW to support the healthy aquaculture of largemouth bass.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Different Concentrations of Hydrogen−Rich Water on the Growth Performance, Digestive Ability, Antioxidant Capacity, Glucose Metabolism Pathway, mTOR Signaling Pathway, and Gut Microbiota of Largemouth Bass (Micropterus salmoides)\",\"authors\":\"Yin Yuan, Huixiang Li, Songwei Chen, Yongchun Lin, Jiangyuan Peng, Junru Hu, Yongsheng Wang\",\"doi\":\"10.3390/fishes9060210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen−rich water (HRW) is widely recognized for its growth promoting, antioxidant, and anti−inflammatory properties. However, little is known about the role of HRW in aquaculture. This study aims to investigate how different concentrations of HRW affect the growth performance, digestive ability, antioxidant capacity, mTOR signaling pathway, and gut microbiota of juvenile largemouth bass. We randomly assigned 360 fish (13.73 ± 0.1 g) to three treatments. The control group was maintained in regular water, while the treatment groups were treated with different concentrations of H2 dissolved in water, which were H1 (179.65 ± 31.95 ppb) and H2 (280.65 ± 64.43 ppb), respectively. Through an analysis of the three treatments, it was found that H1 significantly increased the final body weight, weight gain rate, specific growth rate, and survival rate, and reduced the feed conversion ratio (p < 0.05). In addition, the trypsin activity was significantly increased in the intestine (p < 0.05), and the expression of genes related to the glucose metabolism (pk and pepck) and mTOR (tor, akt, s6k1, 4ebp1, and ampka) signaling pathways were significantly increased in the liver in H1 (p < 0.05). The relative abundance of Blautia in the gut microbiota (p < 0.05) was significantly increased in H1. Therefore, these results indicated that H1 can significantly improve growth performance, promote intestinal digestion, activate the glucose metabolism pathway and mTOR signaling pathway, and increase the abundance of beneficial bacteria in the gut of largemouth bass. These findings provided valuable support for the application of HRW to support the healthy aquaculture of largemouth bass.\",\"PeriodicalId\":12405,\"journal\":{\"name\":\"Fishes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes9060210\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fishes9060210","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

富氢水(HRW)因其促进生长、抗氧化和抗炎特性而被广泛认可。然而,人们对富氢水在水产养殖中的作用知之甚少。本研究旨在探讨不同浓度的氢化水如何影响大口鲈幼鱼的生长性能、消化能力、抗氧化能力、mTOR 信号通路和肠道微生物群。我们将 360 尾鱼(13.73 ± 0.1 克)随机分配到三种处理中。对照组在普通水中饲养,处理组在水中溶解不同浓度的 H2,分别为 H1(179.65 ± 31.95 ppb)和 H2(280.65 ± 64.43 ppb)。通过对三种处理的分析发现,H1 能显著提高最终体重、增重率、特定生长率和存活率,并降低饲料转化率(p < 0.05)。此外,肠道中的胰蛋白酶活性明显增加(p < 0.05),H1 处理中肝脏中葡萄糖代谢(pk 和 pepck)和 mTOR(tor、akt、s6k1、4ebp1 和 ampka)信号通路相关基因的表达量明显增加(p < 0.05)。肠道微生物群中 Blautia 的相对丰度在 H1 中明显增加(p < 0.05)。因此,这些结果表明,H1 能显著提高大口鲈的生长性能,促进肠道消化,激活葡萄糖代谢途径和 mTOR 信号转导途径,并增加肠道中有益菌的丰度。这些发现为应用 HRW 支持大口鲈鱼的健康养殖提供了宝贵的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Different Concentrations of Hydrogen−Rich Water on the Growth Performance, Digestive Ability, Antioxidant Capacity, Glucose Metabolism Pathway, mTOR Signaling Pathway, and Gut Microbiota of Largemouth Bass (Micropterus salmoides)
Hydrogen−rich water (HRW) is widely recognized for its growth promoting, antioxidant, and anti−inflammatory properties. However, little is known about the role of HRW in aquaculture. This study aims to investigate how different concentrations of HRW affect the growth performance, digestive ability, antioxidant capacity, mTOR signaling pathway, and gut microbiota of juvenile largemouth bass. We randomly assigned 360 fish (13.73 ± 0.1 g) to three treatments. The control group was maintained in regular water, while the treatment groups were treated with different concentrations of H2 dissolved in water, which were H1 (179.65 ± 31.95 ppb) and H2 (280.65 ± 64.43 ppb), respectively. Through an analysis of the three treatments, it was found that H1 significantly increased the final body weight, weight gain rate, specific growth rate, and survival rate, and reduced the feed conversion ratio (p < 0.05). In addition, the trypsin activity was significantly increased in the intestine (p < 0.05), and the expression of genes related to the glucose metabolism (pk and pepck) and mTOR (tor, akt, s6k1, 4ebp1, and ampka) signaling pathways were significantly increased in the liver in H1 (p < 0.05). The relative abundance of Blautia in the gut microbiota (p < 0.05) was significantly increased in H1. Therefore, these results indicated that H1 can significantly improve growth performance, promote intestinal digestion, activate the glucose metabolism pathway and mTOR signaling pathway, and increase the abundance of beneficial bacteria in the gut of largemouth bass. These findings provided valuable support for the application of HRW to support the healthy aquaculture of largemouth bass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fishes
Fishes Multiple-
CiteScore
1.90
自引率
8.70%
发文量
311
期刊最新文献
Effect of a Guar Meal Protein Concentrate in Replacement of Conventional Feedstuffs on Productive Performances and Gut Health of Rainbow Trout (Oncorhynchus mykiss) RTL-YOLOv8n: A Lightweight Model for Efficient and Accurate Underwater Target Detection Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys Practice of Territorial Use Rights in Fisheries in Coastal Fishery Management in China: A Case Study of the Island Reefs Fishery Lease Policy from Shengsi County in Zhejiang Province Characterization of Ovarian Lipid Composition in the Largemouth Bronze Gudgeon (Coreius guichenoti) at Different Development Stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1