利用脂肪分解酵母菌从废弃食用油中可持续地生物合成角鲨烯

IF 3.7 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic Engineering Communications Pub Date : 2024-06-01 DOI:10.1016/j.mec.2024.e00240
Shuhui Wang , Xu Sun , Yuqing Han , Zhuo Li , Xiaocong Lu , Hongrui Shi , Cui-ying Zhang , Adison Wong , Aiqun Yu
{"title":"利用脂肪分解酵母菌从废弃食用油中可持续地生物合成角鲨烯","authors":"Shuhui Wang ,&nbsp;Xu Sun ,&nbsp;Yuqing Han ,&nbsp;Zhuo Li ,&nbsp;Xiaocong Lu ,&nbsp;Hongrui Shi ,&nbsp;Cui-ying Zhang ,&nbsp;Adison Wong ,&nbsp;Aiqun Yu","doi":"10.1016/j.mec.2024.e00240","DOIUrl":null,"url":null,"abstract":"<div><p>Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast <em>Yarrowia lipolytica</em>, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway — specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase — we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using <em>Y. lipolytica</em> cell factories, contributing to circular economy initiatives by valorizing waste materials.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"18 ","pages":"Article e00240"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000099/pdfft?md5=1108c813c703155bf810e5b6e7073c94&pid=1-s2.0-S2214030124000099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica\",\"authors\":\"Shuhui Wang ,&nbsp;Xu Sun ,&nbsp;Yuqing Han ,&nbsp;Zhuo Li ,&nbsp;Xiaocong Lu ,&nbsp;Hongrui Shi ,&nbsp;Cui-ying Zhang ,&nbsp;Adison Wong ,&nbsp;Aiqun Yu\",\"doi\":\"10.1016/j.mec.2024.e00240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast <em>Yarrowia lipolytica</em>, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway — specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase — we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using <em>Y. lipolytica</em> cell factories, contributing to circular economy initiatives by valorizing waste materials.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"18 \",\"pages\":\"Article e00240\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000099/pdfft?md5=1108c813c703155bf810e5b6e7073c94&pid=1-s2.0-S2214030124000099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

角鲨烯是一种广受欢迎的三萜类化合物,其需求量与日俱增,它的生产为循环经济实践提供了一条前景广阔的途径。在这项研究中,我们运用代谢工程原理,以废弃食用油为底物,提高了非常规酵母亚罗酵母(Yarrowia lipolytica)的角鲨烯产量。通过过表达甲羟戊酸途径中的关键酶,特别是编码角鲨烯合成酶的 ERG9、编码二磷酸法呢基合成酶的 ERG20 和编码羟甲基-戊二酰-CoA 还原酶的 HMGR,我们获得了 779.9 mg/L 的角鲨烯产量。进一步联合表达编码二酰甘油酰基转移酶的 DGA1 和编码肉碱乙酰转移酶的 CAT2,并结合之前的代谢强化,使工程菌株 Po1g17 的角鲨烯产量提高到 1381.4 mg/L。为了增加前体乙酰-CoA 的供应并抑制下游角鲨烯的转化,我们补充了 6 克/升丙酮酸和 0.7 毫克/升特比萘芬,结果角鲨烯的总滴度达到了 2594.1 毫克/升。这些进展凸显了利用脂溶性角鲨烯细胞工厂进行可持续、大规模角鲨烯生产的潜力,通过对废弃材料进行估值,为循环经济倡议做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica

Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast Yarrowia lipolytica, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway — specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase — we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using Y. lipolytica cell factories, contributing to circular economy initiatives by valorizing waste materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic Engineering Communications
Metabolic Engineering Communications Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
13.30
自引率
1.90%
发文量
22
审稿时长
18 weeks
期刊介绍: Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.
期刊最新文献
Reconstruction and analyses of genome-scale halomonas metabolic network yield a highly efficient PHA production Selective production of the itaconic acid-derived compounds 2-hydroxyparaconic and itatartaric acid Tuning the performance of a TphR-based terephthalate biosensor with a design of experiments approach Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1