预测太阳辐照度,为太阳能系统设计和融资决策提供依据

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC SAIEE Africa Research Journal Pub Date : 2024-06-06 DOI:10.23919/SAIEE.2024.10551303
Ronewa Mabodi;Jahvaid Hammujuddy
{"title":"预测太阳辐照度,为太阳能系统设计和融资决策提供依据","authors":"Ronewa Mabodi;Jahvaid Hammujuddy","doi":"10.23919/SAIEE.2024.10551303","DOIUrl":null,"url":null,"abstract":"This research presents the implementation and evaluation of machine learning models to predict solar irradiance (W/m\n<sup>2</sup>\n). The objective is to provide valuable insights for making informed decisions regarding solar system design and financing. A thorough exploratory data analysis was conducted on the Southern African Universities Radiometric Network (SAURAN) data collected at the University of Pretoria’s station to gain insights into the patterns of solar irradiance over the past 10 years. Python’s functions and libraries are utilized extensively for conducting exploratory data analysis, model implementation, model testing, forecasting, and data visualization. Random Forest (RF), k-Nearest Neighbors (KNN), Feedforward Neural Network (FFNN), Support Vector Regression (SVR), and eXtreme Gradient Boosting models (XGBoost) are implemented and evaluated. The KNN model was found to be superior achieving a relative Root Mean Squared Error (RMSE), relative Mean Absolute Error (MAE), and R-Squared (R\n<sup>2</sup>\n) of 5.77%, 4.51% and 0.89 respectively on testing data. The variable importance analysis revealed that temperature (X!) exerted the greatest influence on predicting solar irradiance, accounting for 44% of the predictive power. The KNN model is suitable to inform solar systems design and financing decisions. Directions for future studies are identified and suggestions for areas of exploration are provided to contribute to the advancement of solar irradiance predictions.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 3","pages":"99-108"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551303","citationCount":"0","resultStr":"{\"title\":\"Solar Irradiance Forecasting for Informed Solar Systems Design and Financing Decisions\",\"authors\":\"Ronewa Mabodi;Jahvaid Hammujuddy\",\"doi\":\"10.23919/SAIEE.2024.10551303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents the implementation and evaluation of machine learning models to predict solar irradiance (W/m\\n<sup>2</sup>\\n). The objective is to provide valuable insights for making informed decisions regarding solar system design and financing. A thorough exploratory data analysis was conducted on the Southern African Universities Radiometric Network (SAURAN) data collected at the University of Pretoria’s station to gain insights into the patterns of solar irradiance over the past 10 years. Python’s functions and libraries are utilized extensively for conducting exploratory data analysis, model implementation, model testing, forecasting, and data visualization. Random Forest (RF), k-Nearest Neighbors (KNN), Feedforward Neural Network (FFNN), Support Vector Regression (SVR), and eXtreme Gradient Boosting models (XGBoost) are implemented and evaluated. The KNN model was found to be superior achieving a relative Root Mean Squared Error (RMSE), relative Mean Absolute Error (MAE), and R-Squared (R\\n<sup>2</sup>\\n) of 5.77%, 4.51% and 0.89 respectively on testing data. The variable importance analysis revealed that temperature (X!) exerted the greatest influence on predicting solar irradiance, accounting for 44% of the predictive power. The KNN model is suitable to inform solar systems design and financing decisions. Directions for future studies are identified and suggestions for areas of exploration are provided to contribute to the advancement of solar irradiance predictions.\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"115 3\",\"pages\":\"99-108\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10551303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10551303/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10551303/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了预测太阳辐照度(瓦/平方米)的机器学习模型的实施和评估。目的是为太阳能系统的设计和融资决策提供有价值的见解。对比勒陀利亚大学站点收集的南部非洲大学辐射测量网络(SAURAN)数据进行了全面的探索性数据分析,以深入了解过去 10 年的太阳辐照度模式。Python 的函数和库被广泛用于进行探索性数据分析、模型实施、模型测试、预测和数据可视化。随机森林 (RF)、k-近邻 (KNN)、前馈神经网络 (FFNN)、支持向量回归 (SVR) 和极梯度提升模型 (XGBoost) 得到了实施和评估。在测试数据中,KNN 模型的相对均方根误差 (RMSE)、相对平均绝对误差 (MAE) 和 R 平方 (R2) 分别为 5.77%、4.51% 和 0.89。变量重要性分析表明,温度(X!)KNN 模型适用于太阳能系统的设计和融资决策。研究还确定了未来的研究方向,并提出了探索领域的建议,以促进太阳辐照度预测的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solar Irradiance Forecasting for Informed Solar Systems Design and Financing Decisions
This research presents the implementation and evaluation of machine learning models to predict solar irradiance (W/m 2 ). The objective is to provide valuable insights for making informed decisions regarding solar system design and financing. A thorough exploratory data analysis was conducted on the Southern African Universities Radiometric Network (SAURAN) data collected at the University of Pretoria’s station to gain insights into the patterns of solar irradiance over the past 10 years. Python’s functions and libraries are utilized extensively for conducting exploratory data analysis, model implementation, model testing, forecasting, and data visualization. Random Forest (RF), k-Nearest Neighbors (KNN), Feedforward Neural Network (FFNN), Support Vector Regression (SVR), and eXtreme Gradient Boosting models (XGBoost) are implemented and evaluated. The KNN model was found to be superior achieving a relative Root Mean Squared Error (RMSE), relative Mean Absolute Error (MAE), and R-Squared (R 2 ) of 5.77%, 4.51% and 0.89 respectively on testing data. The variable importance analysis revealed that temperature (X!) exerted the greatest influence on predicting solar irradiance, accounting for 44% of the predictive power. The KNN model is suitable to inform solar systems design and financing decisions. Directions for future studies are identified and suggestions for areas of exploration are provided to contribute to the advancement of solar irradiance predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
期刊最新文献
Table of contents Front cover Notes Back cover Advancements in electrical marine propulsion technologies: A comprehensive overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1