{"title":"用彩色 Petri 网模拟钱迪-兰波特分布式快照算法","authors":"Saeid Pashazadeh, Basheer Zuhair Jaafar Al-Basseer, Jafar Tanha","doi":"10.1049/2024/6582682","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Distributed global snapshot (DGS) is one of the fundamental protocols in distributed systems. It is used for different applications like collecting information from a distributed system and taking checkpoints for process rollback. The Chandy–Lamport protocol (CLP) is famous and well-known for taking DGS. The main aim of this protocol was to generate consistent cuts without interrupting the regular operation of the distributed system. CLP was the origin of many future protocols and inspired them. The first aim of this paper is to propose a novel formal hierarchical parametric colored Petri net model of CLP. The number of constituting processes of the model is parametric. The second aim is to automatically generate a novel message sequence chart (MSC) to show detailed steps for each simulation run of the snapshot protocol. The third aim is model checking of the proposed formal model to verify the correctness of CLP and our proposed colored Petri net model. Having vital tools helps greatly to test the correct operation of the newly proposed distributed snapshot protocol. The proposed model of CLP can easily be used for visually testing the correct operation of the new future under-development DGS protocol. It also permits formal verification of the correct operation of the new proposed protocol. This model can be used as a simple, powerful, and visual tool for the step-by-step run of the CLP, model checking, and teaching it to postgraduate students. The same approach applies to similar complicated distributed protocols.</p>\n </div>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"2024 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6582682","citationCount":"0","resultStr":"{\"title\":\"Modeling Chandy–Lamport Distributed Snapshot Algorithm Using Colored Petri Net\",\"authors\":\"Saeid Pashazadeh, Basheer Zuhair Jaafar Al-Basseer, Jafar Tanha\",\"doi\":\"10.1049/2024/6582682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Distributed global snapshot (DGS) is one of the fundamental protocols in distributed systems. It is used for different applications like collecting information from a distributed system and taking checkpoints for process rollback. The Chandy–Lamport protocol (CLP) is famous and well-known for taking DGS. The main aim of this protocol was to generate consistent cuts without interrupting the regular operation of the distributed system. CLP was the origin of many future protocols and inspired them. The first aim of this paper is to propose a novel formal hierarchical parametric colored Petri net model of CLP. The number of constituting processes of the model is parametric. The second aim is to automatically generate a novel message sequence chart (MSC) to show detailed steps for each simulation run of the snapshot protocol. The third aim is model checking of the proposed formal model to verify the correctness of CLP and our proposed colored Petri net model. Having vital tools helps greatly to test the correct operation of the newly proposed distributed snapshot protocol. The proposed model of CLP can easily be used for visually testing the correct operation of the new future under-development DGS protocol. It also permits formal verification of the correct operation of the new proposed protocol. This model can be used as a simple, powerful, and visual tool for the step-by-step run of the CLP, model checking, and teaching it to postgraduate students. The same approach applies to similar complicated distributed protocols.</p>\\n </div>\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6582682\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6582682\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6582682","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
分布式全局快照(DGS)是分布式系统的基本协议之一。它用于不同的应用,如从分布式系统中收集信息,以及为进程回滚获取检查点。Chandy-Lamport 协议(CLP)是著名的 DGS 协议。该协议的主要目的是在不中断分布式系统正常运行的情况下生成一致的切点。CLP 是许多未来协议的起源和灵感来源。本文的第一个目的是提出一种新颖的 CLP 形式分层参数化彩色 Petri 网模型。该模型的构成进程数是参数化的。第二个目的是自动生成新颖的消息序列图(MSC),以显示快照协议每次模拟运行的详细步骤。第三个目的是对提出的形式模型进行模型检查,以验证 CLP 和我们提出的彩色 Petri 网模型的正确性。拥有重要的工具对测试新提出的分布式快照协议的正确运行大有帮助。拟议的 CLP 模型可轻松用于直观测试未来正在开发的新 DGS 协议的正确运行。它还允许对新提议协议的正确操作进行正式验证。这个模型可以作为一个简单、强大和可视化的工具,用于逐步运行 CLP、进行模型检查和教授研究生。同样的方法也适用于类似的复杂分布式协议。
Modeling Chandy–Lamport Distributed Snapshot Algorithm Using Colored Petri Net
Distributed global snapshot (DGS) is one of the fundamental protocols in distributed systems. It is used for different applications like collecting information from a distributed system and taking checkpoints for process rollback. The Chandy–Lamport protocol (CLP) is famous and well-known for taking DGS. The main aim of this protocol was to generate consistent cuts without interrupting the regular operation of the distributed system. CLP was the origin of many future protocols and inspired them. The first aim of this paper is to propose a novel formal hierarchical parametric colored Petri net model of CLP. The number of constituting processes of the model is parametric. The second aim is to automatically generate a novel message sequence chart (MSC) to show detailed steps for each simulation run of the snapshot protocol. The third aim is model checking of the proposed formal model to verify the correctness of CLP and our proposed colored Petri net model. Having vital tools helps greatly to test the correct operation of the newly proposed distributed snapshot protocol. The proposed model of CLP can easily be used for visually testing the correct operation of the new future under-development DGS protocol. It also permits formal verification of the correct operation of the new proposed protocol. This model can be used as a simple, powerful, and visual tool for the step-by-step run of the CLP, model checking, and teaching it to postgraduate students. The same approach applies to similar complicated distributed protocols.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf