通过光子固化实现光电子学用结晶硒化锑薄膜

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-06 DOI:10.1021/acs.chemmater.4c00540
Udari Wijesinghe, William D. Tetlow, Pietro Maiello, Nicole Fleck, Graeme O’Dowd, Neil S. Beattie, Giulia Longo* and Oliver S. Hutter*, 
{"title":"通过光子固化实现光电子学用结晶硒化锑薄膜","authors":"Udari Wijesinghe,&nbsp;William D. Tetlow,&nbsp;Pietro Maiello,&nbsp;Nicole Fleck,&nbsp;Graeme O’Dowd,&nbsp;Neil S. Beattie,&nbsp;Giulia Longo* and Oliver S. Hutter*,&nbsp;","doi":"10.1021/acs.chemmater.4c00540","DOIUrl":null,"url":null,"abstract":"<p >Thermal annealing is the most common postdeposition technique used to crystallize antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of Sb<sub>2</sub>Se<sub>3</sub> for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated Sb<sub>2</sub>Se<sub>3</sub> films. This study demonstrates how photonic curing (PC) conditions affect the outcome of Sb<sub>2</sub>Se<sub>3</sub> phase conversion from amorphous to crystalline by evaluating the films’ crystalline, morphological, and optical properties. We show that Sb<sub>2</sub>Se<sub>3</sub> is readily converted under a variety of different conditions, but the zone where suitable films for optoelectronic applications are obtained is a small region of the parameter space. Sb<sub>2</sub>Se<sub>3</sub> annealing with short pulses (&lt;3 ms) shows significant damage to the sample, while using longer pulses (&gt;5 ms) and a 4–5 J cm<sup>–2</sup> radiant energy produces (211)- and (221)-oriented crystalline Sb<sub>2</sub>Se<sub>3</sub> with minimal to no damage to the sample. A proof-of-concept photonically cured Sb<sub>2</sub>Se<sub>3</sub> photovoltaic device is demonstrated. PC is a promising annealing method for large-area, high-throughput annealing of Sb<sub>2</sub>Se<sub>3</sub> with various potential applications in Sb<sub>2</sub>Se<sub>3</sub> photovoltaics.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00540","citationCount":"0","resultStr":"{\"title\":\"Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing\",\"authors\":\"Udari Wijesinghe,&nbsp;William D. Tetlow,&nbsp;Pietro Maiello,&nbsp;Nicole Fleck,&nbsp;Graeme O’Dowd,&nbsp;Neil S. Beattie,&nbsp;Giulia Longo* and Oliver S. Hutter*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c00540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thermal annealing is the most common postdeposition technique used to crystallize antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of Sb<sub>2</sub>Se<sub>3</sub> for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated Sb<sub>2</sub>Se<sub>3</sub> films. This study demonstrates how photonic curing (PC) conditions affect the outcome of Sb<sub>2</sub>Se<sub>3</sub> phase conversion from amorphous to crystalline by evaluating the films’ crystalline, morphological, and optical properties. We show that Sb<sub>2</sub>Se<sub>3</sub> is readily converted under a variety of different conditions, but the zone where suitable films for optoelectronic applications are obtained is a small region of the parameter space. Sb<sub>2</sub>Se<sub>3</sub> annealing with short pulses (&lt;3 ms) shows significant damage to the sample, while using longer pulses (&gt;5 ms) and a 4–5 J cm<sup>–2</sup> radiant energy produces (211)- and (221)-oriented crystalline Sb<sub>2</sub>Se<sub>3</sub> with minimal to no damage to the sample. A proof-of-concept photonically cured Sb<sub>2</sub>Se<sub>3</sub> photovoltaic device is demonstrated. PC is a promising annealing method for large-area, high-throughput annealing of Sb<sub>2</sub>Se<sub>3</sub> with various potential applications in Sb<sub>2</sub>Se<sub>3</sub> photovoltaics.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00540\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00540\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00540","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热退火是硒化锑(Sb2Se3)薄膜结晶最常用的沉积后技术。然而,由于处理速度慢、能耗高,它与未来光伏领域 Sb2Se3 的升级和商业化不相适应。在本文中,我们首次采用了一种快速退火技术,利用毫秒级光脉冲向样品传递能量,以固化热蒸发 Sb2Se3 薄膜。本研究通过评估薄膜的晶体、形态和光学特性,展示了光子固化 (PC) 条件如何影响 Sb2Se3 从非晶到晶体的相变结果。我们的研究表明,在各种不同的条件下,Sb2Se3 很容易发生转化,但获得适合光电应用的薄膜的区域只是参数空间的一小部分。使用短脉冲(3 毫秒)进行 Sb2Se3 退火会对样品造成严重破坏,而使用长脉冲(5 毫秒)和 4-5 J cm-2 的辐射能则能产生 (211)- 和 (221)- 取向的晶体 Sb2Se3,对样品的破坏极小甚至没有。演示了一个概念验证型光固化 Sb2Se3 光伏设备。PC 是一种很有前途的退火方法,可用于 Sb2Se3 的大面积、高通量退火,在 Sb2Se3 光伏领域有多种潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing

Thermal annealing is the most common postdeposition technique used to crystallize antimony selenide (Sb2Se3) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of Sb2Se3 for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated Sb2Se3 films. This study demonstrates how photonic curing (PC) conditions affect the outcome of Sb2Se3 phase conversion from amorphous to crystalline by evaluating the films’ crystalline, morphological, and optical properties. We show that Sb2Se3 is readily converted under a variety of different conditions, but the zone where suitable films for optoelectronic applications are obtained is a small region of the parameter space. Sb2Se3 annealing with short pulses (<3 ms) shows significant damage to the sample, while using longer pulses (>5 ms) and a 4–5 J cm–2 radiant energy produces (211)- and (221)-oriented crystalline Sb2Se3 with minimal to no damage to the sample. A proof-of-concept photonically cured Sb2Se3 photovoltaic device is demonstrated. PC is a promising annealing method for large-area, high-throughput annealing of Sb2Se3 with various potential applications in Sb2Se3 photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Lanthanide Contraction Eliminates Disorder while Holding Robust Second Harmonic Generation in a Series of Polyiodates Unveiling Cellular Secrets: Illuminating Carbon Dot Lighthouses for Improved Mitochondrial Exploration Decoupling Interlayer Spacing and Cation Dipole on Exciton Binding Energy in Layered Halide Perovskites New Mn and V-rich Phosphate Fluoride Obtained by Topochemical Reaction for Na-ion Batteries Positive Electrode Br-Induced Suppression of Low-Temperature Phase Transitions in Mixed-Cation Mixed-Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1