Pauline Malinge, Xavier Chauchet, Jérémie Bourguignon, Nicolas Bosson, Sébastien Calloud, Tereza Bautzova, Marie Borlet, Mette Laursen, Vinardas Kelpsas, Nadia Rose, Franck Gueneau, Ulla Ravn, Giovanni Magistrelli, Nicolas Fischer
{"title":"针对 CD47 和 PD-L1 的轻链驱动双特异性抗体的结构分析。","authors":"Pauline Malinge, Xavier Chauchet, Jérémie Bourguignon, Nicolas Bosson, Sébastien Calloud, Tereza Bautzova, Marie Borlet, Mette Laursen, Vinardas Kelpsas, Nadia Rose, Franck Gueneau, Ulla Ravn, Giovanni Magistrelli, Nicolas Fischer","doi":"10.1080/19420862.2024.2362432","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of light chain-driven bispecific antibodies targeting CD47 and PD-L1.\",\"authors\":\"Pauline Malinge, Xavier Chauchet, Jérémie Bourguignon, Nicolas Bosson, Sébastien Calloud, Tereza Bautzova, Marie Borlet, Mette Laursen, Vinardas Kelpsas, Nadia Rose, Franck Gueneau, Ulla Ravn, Giovanni Magistrelli, Nicolas Fischer\",\"doi\":\"10.1080/19420862.2024.2362432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2024.2362432\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2362432","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
与主要依靠重链与其同源抗原建立联系的天然抗体不同,我们开发了一种双特异性抗体形式,其中轻链(LC)驱动抗原结合和特异性。为了更好地理解这种情况下表位与配位体之间的相互作用,我们测定了与人类 CD47 复合物结合的抗原结合片段(Fab)和与人类 PD-L1 复合物结合的另一种 Fab 的 X 射线晶体学结构。这些 Fab 分别含有一个 κ-LC 和一个 λ-LC,它们与一个相同的重链(HC)配对。对这些复合物的结构分析表明,LC 对抗原的结合起着主导作用,但在 CD47 和 PD-L1 Fab 复合物中,共同的 HC 也提供了一些接触点。通过噬菌体展示选择,对 LC 的互补决定区进行了多样化,从而优化了抗 CD47 Fab 的亲和力。通过同源建模,分析了氨基酸修饰对亲和力提高的贡献。我们的研究结果表明,尽管 LC 在天然抗体中的作用并不突出,但它可以介导与不同抗原的高亲和力结合,并中和它们的生物功能。重要的是,含有共同可变重(VH)结构域的 Fabs 能够生成保留真正原生结构的双特异性抗体,最大限度地发挥其治疗潜力。
Structural analysis of light chain-driven bispecific antibodies targeting CD47 and PD-L1.
In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.