Muxia Yan , Xuexin Chen , Qian Ye , Huating Li , Li Zhang , Yiqian Wang
{"title":"IL-33 依赖性 NF-κB 激活可抑制急性髓性白血病患者的细胞凋亡并驱动化疗抗性","authors":"Muxia Yan , Xuexin Chen , Qian Ye , Huating Li , Li Zhang , Yiqian Wang","doi":"10.1016/j.cyto.2024.156672","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development.</p></div><div><h3>Methods</h3><p>Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines.</p></div><div><h3>Results</h3><p>IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the <em>in vivo</em> pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML.</p></div><div><h3>Conclusion</h3><p>Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.</p></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-33-dependent NF-κB activation inhibits apoptosis and drives chemoresistance in acute myeloid leukemia\",\"authors\":\"Muxia Yan , Xuexin Chen , Qian Ye , Huating Li , Li Zhang , Yiqian Wang\",\"doi\":\"10.1016/j.cyto.2024.156672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development.</p></div><div><h3>Methods</h3><p>Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines.</p></div><div><h3>Results</h3><p>IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the <em>in vivo</em> pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML.</p></div><div><h3>Conclusion</h3><p>Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.</p></div>\",\"PeriodicalId\":297,\"journal\":{\"name\":\"Cytokine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043466624001753\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466624001753","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
IL-33-dependent NF-κB activation inhibits apoptosis and drives chemoresistance in acute myeloid leukemia
Background
Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development.
Methods
Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines.
Results
IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the in vivo pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML.
Conclusion
Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.