盖亚DR3和LAMOST DR7观测到的内光环热亚矮星的运动学和椭球特性

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS New Astronomy Pub Date : 2024-06-03 DOI:10.1016/j.newast.2024.102258
W.H. Elsanhoury
{"title":"盖亚DR3和LAMOST DR7观测到的内光环热亚矮星的运动学和椭球特性","authors":"W.H. Elsanhoury","doi":"10.1016/j.newast.2024.102258","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we report the kinematical parameters of inner-halo hot subdwarfs located within <span><math><mrow><mo>(</mo><mrow><mi>d</mi><mo>≤</mo><mn>15</mn><mrow><mspace></mspace><mtext>kpc</mtext></mrow></mrow><mo>)</mo></mrow></math></span> at high Galactic latitudes <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>b</mi></mrow><mi>o</mi></msup><mo>≥</mo><mn>20</mn></mrow><mo>)</mo></mrow></math></span>. The study included three program stars for one of the extreme He-rich groups (<em>e</em>He-1) with eccentricity (<em>e</em>= 0.65) and the z-component of the angular momentum (J<sub>z</sub> = 4288.66 kpc km <em>s</em><sup>−1</sup>), the inner halo program I with 121 points <span><math><mrow><mo>(</mo><mrow><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and their subsections, i.e. inner halo program II (sdB; 79 points) with <span><math><mrow><mo>(</mo><mrow><mn>40</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and inner halo program III (sdO; 42 points) with <span><math><mrow><mo>(</mo><mrow><mn>80</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>40</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span>. First, we calculated the spatial velocities (<span><math><mrow><mover><mi>U</mi><mo>¯</mo></mover><mo>,</mo><mrow><mspace></mspace><mover><mi>V</mi><mo>¯</mo></mover></mrow><mo>,</mo><mrow><mspace></mspace><mover><mi>W</mi><mo>¯</mo></mover></mrow><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>)</mo></mrow></mrow></math></span> along the Galactic coordinates (i.e., 25.73 ± ± 5.07, 28.79 ± 5.37, −14.51 ± 3.81) and their dispersion velocities <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi><mn>1</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>3</mn></msub><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> = (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08) and subsequently their subsections sdB and sdO. Second, we calculated the vertex longitudes <span><math><mrow><mo>(</mo><msub><mi>l</mi><mn>2</mn></msub><mo>)</mo></mrow></math></span> and the Solar motion <span><math><mrow><mo>(</mo><mrow><msub><mi>S</mi><mo>⊙</mo></msub><mo>=</mo><mn>41.24</mn><mrow><mspace></mspace><mspace></mspace></mrow><mn>6.42</mn><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> as well as their subsections. Finally, based on the kinematic relation of the ratio <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi><mn>2</mn></msub><mo>/</mo><msub><mi>σ</mi><mn>1</mn></msub></mrow><mo>)</mo></mrow></math></span> and our previously computed numerical value of the angular rotation rate <span><math><mrow><mo>(</mo><mrow><mrow><mo>|</mo><mrow><mi>A</mi><mo>−</mo><mi>B</mi></mrow><mo>|</mo></mrow><mo>=</mo><mspace></mspace><mn>26.07</mn><mo>±</mo><mn>5.10</mn><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mtext>kp</mtext><msup><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span>, we obtained the average Oort's constants as <span><math><mrow><mo>(</mo><mrow><mrow><mi>A</mi><mspace></mspace></mrow><mo>&amp;</mo><mrow><mspace></mspace><mi>B</mi></mrow><mo>;</mo><mrow><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mtext>kp</mtext><msup><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> = (9.38 ± 0.33, −16.69 ± 0.25).</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematical and ellipsoidal properties of the inner-halo hot subdwarfs observed in Gaia DR3 and LAMOST DR7\",\"authors\":\"W.H. Elsanhoury\",\"doi\":\"10.1016/j.newast.2024.102258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here, we report the kinematical parameters of inner-halo hot subdwarfs located within <span><math><mrow><mo>(</mo><mrow><mi>d</mi><mo>≤</mo><mn>15</mn><mrow><mspace></mspace><mtext>kpc</mtext></mrow></mrow><mo>)</mo></mrow></math></span> at high Galactic latitudes <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>b</mi></mrow><mi>o</mi></msup><mo>≥</mo><mn>20</mn></mrow><mo>)</mo></mrow></math></span>. The study included three program stars for one of the extreme He-rich groups (<em>e</em>He-1) with eccentricity (<em>e</em>= 0.65) and the z-component of the angular momentum (J<sub>z</sub> = 4288.66 kpc km <em>s</em><sup>−1</sup>), the inner halo program I with 121 points <span><math><mrow><mo>(</mo><mrow><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and their subsections, i.e. inner halo program II (sdB; 79 points) with <span><math><mrow><mo>(</mo><mrow><mn>40</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>24</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span> and inner halo program III (sdO; 42 points) with <span><math><mrow><mo>(</mo><mrow><mn>80</mn><mo>,</mo><mn>000</mn><mo>≥</mo><msub><mi>T</mi><mtext>eff</mtext></msub><mo>≥</mo><mn>40</mn><mo>,</mo><mn>000</mn></mrow><mo>)</mo></mrow></math></span>. First, we calculated the spatial velocities (<span><math><mrow><mover><mi>U</mi><mo>¯</mo></mover><mo>,</mo><mrow><mspace></mspace><mover><mi>V</mi><mo>¯</mo></mover></mrow><mo>,</mo><mrow><mspace></mspace><mover><mi>W</mi><mo>¯</mo></mover></mrow><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>)</mo></mrow></mrow></math></span> along the Galactic coordinates (i.e., 25.73 ± ± 5.07, 28.79 ± 5.37, −14.51 ± 3.81) and their dispersion velocities <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi><mn>1</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><mn>3</mn></msub><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> = (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08) and subsequently their subsections sdB and sdO. Second, we calculated the vertex longitudes <span><math><mrow><mo>(</mo><msub><mi>l</mi><mn>2</mn></msub><mo>)</mo></mrow></math></span> and the Solar motion <span><math><mrow><mo>(</mo><mrow><msub><mi>S</mi><mo>⊙</mo></msub><mo>=</mo><mn>41.24</mn><mrow><mspace></mspace><mspace></mspace></mrow><mn>6.42</mn><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> as well as their subsections. Finally, based on the kinematic relation of the ratio <span><math><mrow><mo>(</mo><mrow><msub><mi>σ</mi><mn>2</mn></msub><mo>/</mo><msub><mi>σ</mi><mn>1</mn></msub></mrow><mo>)</mo></mrow></math></span> and our previously computed numerical value of the angular rotation rate <span><math><mrow><mo>(</mo><mrow><mrow><mo>|</mo><mrow><mi>A</mi><mo>−</mo><mi>B</mi></mrow><mo>|</mo></mrow><mo>=</mo><mspace></mspace><mn>26.07</mn><mo>±</mo><mn>5.10</mn><mo>;</mo><mrow><mspace></mspace><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mtext>kp</mtext><msup><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span>, we obtained the average Oort's constants as <span><math><mrow><mo>(</mo><mrow><mrow><mi>A</mi><mspace></mspace></mrow><mo>&amp;</mo><mrow><mspace></mspace><mi>B</mi></mrow><mo>;</mo><mrow><mtext>km</mtext><mspace></mspace></mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mtext>kp</mtext><msup><mrow><mi>c</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></math></span> = (9.38 ± 0.33, −16.69 ± 0.25).</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624000721\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000721","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们报告了位于银河系高纬度(bo≥20)(d≤15kpc)范围内的内光环热亚矮星的运动学参数。该研究包括三颗程序恒星,它们属于极端富氦群组(eHe-1)之一,其偏心率(e= 0.65)和角动量的 z 分量(Jz = 4288.66 kpc km s-1)的内光环计划 I,包括 121 个点(Teff≥24,000)及其子部分,即内光环计划 II(sdB;79 个点)(40,000≥Teff≥24,000)和内光环计划 III(sdO;42 个点)(80,000≥Teff≥40,000)。首先,我们计算了沿银河系坐标(即 25.73 ± ± 5.07, 28.79 ± 5.37, -14.51 ± 3.81)的空间速度(U¯,V¯,W¯;kms-1)和它们的色散速度(σ1,σ2,σ3;kms-1)= (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08),随后又计算了它们的分段 sdB 和 sdO。其次,我们计算了顶点经度(l2)和太阳运动(S⊙=41.246.42kms-1)及其分段。最后,根据比率(σ2/σ1)的运动学关系和我们之前计算的角旋转率数值(|A-B|=26.07±5.10;kms-1kpc-1),我们得到了平均奥尔特常数为 (A&B;kms-1kpc-1) = (9.38 ± 0.33, -16.69±0.25)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinematical and ellipsoidal properties of the inner-halo hot subdwarfs observed in Gaia DR3 and LAMOST DR7

Here, we report the kinematical parameters of inner-halo hot subdwarfs located within (d15kpc) at high Galactic latitudes (bo20). The study included three program stars for one of the extreme He-rich groups (eHe-1) with eccentricity (e= 0.65) and the z-component of the angular momentum (Jz = 4288.66 kpc km s−1), the inner halo program I with 121 points (Teff24,000) and their subsections, i.e. inner halo program II (sdB; 79 points) with (40,000Teff24,000) and inner halo program III (sdO; 42 points) with (80,000Teff40,000). First, we calculated the spatial velocities (U¯,V¯,W¯;kms1) along the Galactic coordinates (i.e., 25.73 ± ± 5.07, 28.79 ± 5.37, −14.51 ± 3.81) and their dispersion velocities (σ1,σ2,σ3;kms1) = (161.94 ± 12.73, 140.31 ± 11.85, 101.57 ± 10.08) and subsequently their subsections sdB and sdO. Second, we calculated the vertex longitudes (l2) and the Solar motion (S=41.246.42kms1) as well as their subsections. Finally, based on the kinematic relation of the ratio (σ2/σ1) and our previously computed numerical value of the angular rotation rate (|AB|=26.07±5.10;kms1kpc1), we obtained the average Oort's constants as (A&B;kms1kpc1) = (9.38 ± 0.33, −16.69 ± 0.25).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
期刊最新文献
Slowly rotating charged Bardeen stellar structure Composition tracking for collisions between differentiated bodies in REBOUND NcorpiON : A O(N) software for N-body integration in collisional and fragmenting systems Study of solar activities associated with a Halo CME on 17 Feb 2023 event Discovery of 226 δ Scuti and γ Doradus Stars near NGC 6871 with TESS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1