{"title":"在关系事件模型中利用神经网络模拟非线性效应","authors":"Edoardo Filippi-Mazzola, Ernst C. Wit","doi":"10.1016/j.socnet.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic networks offer an insight of how relational systems evolve. However, modeling these networks efficiently remains a challenge, primarily due to computational constraints, especially as the number of observed events grows. This paper addresses this issue by introducing the Deep Relational Event Additive Model (DREAM) as a solution to the computational challenges presented by modeling non-linear effects in Relational Event Models (REMs). DREAM relies on Neural Additive Models to model non-linear effects, allowing each effect to be captured by an independent neural network. By strategically trading computational complexity for improved memory management and leveraging the computational capabilities of graphic processor units (GPUs), DREAM efficiently captures complex non-linear relationships within data. This approach demonstrates the capability of DREAM in modeling dynamic networks and scaling to larger networks. Comparisons with traditional REM approaches showcase DREAM superior computational efficiency. The model potential is further demonstrated by an examination of the patent citation network, which contains nearly 8 million nodes and 100 million events.</p></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"79 ","pages":"Pages 25-33"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378873324000327/pdfft?md5=1df5a4529750bdad68d7db5d742c29eb&pid=1-s2.0-S0378873324000327-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling non-linear effects with neural networks in Relational Event Models\",\"authors\":\"Edoardo Filippi-Mazzola, Ernst C. Wit\",\"doi\":\"10.1016/j.socnet.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic networks offer an insight of how relational systems evolve. However, modeling these networks efficiently remains a challenge, primarily due to computational constraints, especially as the number of observed events grows. This paper addresses this issue by introducing the Deep Relational Event Additive Model (DREAM) as a solution to the computational challenges presented by modeling non-linear effects in Relational Event Models (REMs). DREAM relies on Neural Additive Models to model non-linear effects, allowing each effect to be captured by an independent neural network. By strategically trading computational complexity for improved memory management and leveraging the computational capabilities of graphic processor units (GPUs), DREAM efficiently captures complex non-linear relationships within data. This approach demonstrates the capability of DREAM in modeling dynamic networks and scaling to larger networks. Comparisons with traditional REM approaches showcase DREAM superior computational efficiency. The model potential is further demonstrated by an examination of the patent citation network, which contains nearly 8 million nodes and 100 million events.</p></div>\",\"PeriodicalId\":48353,\"journal\":{\"name\":\"Social Networks\",\"volume\":\"79 \",\"pages\":\"Pages 25-33\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000327/pdfft?md5=1df5a4529750bdad68d7db5d742c29eb&pid=1-s2.0-S0378873324000327-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Networks\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000327\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873324000327","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Modeling non-linear effects with neural networks in Relational Event Models
Dynamic networks offer an insight of how relational systems evolve. However, modeling these networks efficiently remains a challenge, primarily due to computational constraints, especially as the number of observed events grows. This paper addresses this issue by introducing the Deep Relational Event Additive Model (DREAM) as a solution to the computational challenges presented by modeling non-linear effects in Relational Event Models (REMs). DREAM relies on Neural Additive Models to model non-linear effects, allowing each effect to be captured by an independent neural network. By strategically trading computational complexity for improved memory management and leveraging the computational capabilities of graphic processor units (GPUs), DREAM efficiently captures complex non-linear relationships within data. This approach demonstrates the capability of DREAM in modeling dynamic networks and scaling to larger networks. Comparisons with traditional REM approaches showcase DREAM superior computational efficiency. The model potential is further demonstrated by an examination of the patent citation network, which contains nearly 8 million nodes and 100 million events.
期刊介绍:
Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.