{"title":"克鲁泽克-拉维亚特有限元的两个单参数非顺应富集族","authors":"Federico Nudo","doi":"10.1016/j.apnum.2024.05.023","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"203 ","pages":"Pages 160-172"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001375/pdfft?md5=94fcf67e97df0d893b8352a366187794&pid=1-s2.0-S0168927424001375-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two one-parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element\",\"authors\":\"Federico Nudo\",\"doi\":\"10.1016/j.apnum.2024.05.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"203 \",\"pages\":\"Pages 160-172\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001375/pdfft?md5=94fcf67e97df0d893b8352a366187794&pid=1-s2.0-S0168927424001375-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001375\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001375","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Two one-parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element
In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.