利用 FMCW-MIMO 雷达的手势识别多功能数据集生成系统

Katsuhisa Kashiwagi;Koichi Ichige
{"title":"利用 FMCW-MIMO 雷达的手势识别多功能数据集生成系统","authors":"Katsuhisa Kashiwagi;Koichi Ichige","doi":"10.1109/TRS.2024.3406883","DOIUrl":null,"url":null,"abstract":"We have developed a versatile dataset generation system for hand gesture (HG) recognition using frequency-modulated continuous-wave (FMCW)-multi-input-multioutput (MIMO) radar to improve the classification performance compared to conventional methods such as open dataset, other data generators using a generative adversarial network (GAN), and motion capture tools. The proposed system consists of an HG trajectory generator, an intermediate frequency (IF) signal generator corresponding to antenna locations, and a sampling timing generator without any open datasets or any motion capture data utilizing other sensors. After the training is performed by the generated dataset, the testing is carried out by actual data collected from FMCW-MIMO radar. Our findings show that the accuracy of 98% can be achieved with the generated dataset, and the proposed system is available for pretraining without using an actual dataset. Furthermore, when the mixed dataset is used for the training process, the accuracy improves by almost 37 points compared to when using the actual dataset only.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"561-572"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile Dataset Generation System for Hand Gesture Recognition Utilizing FMCW-MIMO Radar\",\"authors\":\"Katsuhisa Kashiwagi;Koichi Ichige\",\"doi\":\"10.1109/TRS.2024.3406883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a versatile dataset generation system for hand gesture (HG) recognition using frequency-modulated continuous-wave (FMCW)-multi-input-multioutput (MIMO) radar to improve the classification performance compared to conventional methods such as open dataset, other data generators using a generative adversarial network (GAN), and motion capture tools. The proposed system consists of an HG trajectory generator, an intermediate frequency (IF) signal generator corresponding to antenna locations, and a sampling timing generator without any open datasets or any motion capture data utilizing other sensors. After the training is performed by the generated dataset, the testing is carried out by actual data collected from FMCW-MIMO radar. Our findings show that the accuracy of 98% can be achieved with the generated dataset, and the proposed system is available for pretraining without using an actual dataset. Furthermore, when the mixed dataset is used for the training process, the accuracy improves by almost 37 points compared to when using the actual dataset only.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"561-572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10541921/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10541921/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用频率调制连续波(FMCW)-多输入多输出(MIMO)雷达开发了一种用于手势(HG)识别的多功能数据集生成系统,与开放数据集、使用生成式对抗网络(GAN)的其他数据生成器和动作捕捉工具等传统方法相比,该系统提高了分类性能。所提议的系统由一个 HG 轨迹生成器、一个与天线位置相对应的中频(IF)信号生成器和一个采样定时生成器组成,不需要任何开放数据集或利用其他传感器的任何运动捕捉数据。通过生成的数据集进行训练后,再通过从 FMCW-MIMO 雷达采集的实际数据进行测试。我们的研究结果表明,使用生成的数据集可以达到 98% 的准确率,而且提议的系统无需使用实际数据集即可进行预训练。此外,在训练过程中使用混合数据集时,准确率比仅使用实际数据集时提高了近 37 个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Versatile Dataset Generation System for Hand Gesture Recognition Utilizing FMCW-MIMO Radar
We have developed a versatile dataset generation system for hand gesture (HG) recognition using frequency-modulated continuous-wave (FMCW)-multi-input-multioutput (MIMO) radar to improve the classification performance compared to conventional methods such as open dataset, other data generators using a generative adversarial network (GAN), and motion capture tools. The proposed system consists of an HG trajectory generator, an intermediate frequency (IF) signal generator corresponding to antenna locations, and a sampling timing generator without any open datasets or any motion capture data utilizing other sensors. After the training is performed by the generated dataset, the testing is carried out by actual data collected from FMCW-MIMO radar. Our findings show that the accuracy of 98% can be achieved with the generated dataset, and the proposed system is available for pretraining without using an actual dataset. Furthermore, when the mixed dataset is used for the training process, the accuracy improves by almost 37 points compared to when using the actual dataset only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1