{"title":"论唐纳森-托马斯不变式的动机和算术改进","authors":"Felipe Espreafico, Johannes Walcher","doi":"10.4310/cntp.2024.v18.n1.a3","DOIUrl":null,"url":null,"abstract":"In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other “refined invariants”, and especially their possible interpretation in quantum theory, we explain how to obtain a quadratic version of Donaldson-Thomas invariants from the motivic invariants defined in the work of Kontsevich and Soibelman and pose some questions. We calculate these invariants in a few simple examples that provide standard tests for these questions, including degree zero invariants of A3 and higher-genus Gopakumar-Vafa invariants recently studied by Liu and Ruan. The comparison with known real and complex counts plays a central role throughout.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"38 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On motivic and arithmetic refinements of Donaldson-Thomas invariants\",\"authors\":\"Felipe Espreafico, Johannes Walcher\",\"doi\":\"10.4310/cntp.2024.v18.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other “refined invariants”, and especially their possible interpretation in quantum theory, we explain how to obtain a quadratic version of Donaldson-Thomas invariants from the motivic invariants defined in the work of Kontsevich and Soibelman and pose some questions. We calculate these invariants in a few simple examples that provide standard tests for these questions, including degree zero invariants of A3 and higher-genus Gopakumar-Vafa invariants recently studied by Liu and Ruan. The comparison with known real and complex counts plays a central role throughout.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2024.v18.n1.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On motivic and arithmetic refinements of Donaldson-Thomas invariants
In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other “refined invariants”, and especially their possible interpretation in quantum theory, we explain how to obtain a quadratic version of Donaldson-Thomas invariants from the motivic invariants defined in the work of Kontsevich and Soibelman and pose some questions. We calculate these invariants in a few simple examples that provide standard tests for these questions, including degree zero invariants of A3 and higher-genus Gopakumar-Vafa invariants recently studied by Liu and Ruan. The comparison with known real and complex counts plays a central role throughout.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.