Isabel Heidegger, Maria Frantzi, Stefan Salcher, Piotr Tymoszuk, Agnieszka Martowicz, Enrique Gomez-Gomez, Ana Blanca, Guillermo Lendinez Cano, Agnieszka Latosinska, Harald Mischak, Antonia Vlahou, Christian Langer, Friedrich Aigner, Martin Puhr, Anne Krogsdam, Zlatko Trajanoski, Dominik Wolf, Andreas Pircher
{"title":"通过与胶原蛋白相关的特定转录组、蛋白质组和尿液组特征预测具有临床意义的前列腺癌。","authors":"Isabel Heidegger, Maria Frantzi, Stefan Salcher, Piotr Tymoszuk, Agnieszka Martowicz, Enrique Gomez-Gomez, Ana Blanca, Guillermo Lendinez Cano, Agnieszka Latosinska, Harald Mischak, Antonia Vlahou, Christian Langer, Friedrich Aigner, Martin Puhr, Anne Krogsdam, Zlatko Trajanoski, Dominik Wolf, Andreas Pircher","doi":"10.1016/j.euo.2024.05.014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2).</p><p><strong>Methods: </strong>Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures.</p><p><strong>Key findings and limitations: </strong>Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation.</p><p><strong>Conclusions and clinical implications: </strong>Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions.</p><p><strong>Patient summary: </strong>In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.</p>","PeriodicalId":12256,"journal":{"name":"European urology oncology","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Clinically Significant Prostate Cancer by a Specific Collagen-related Transcriptome, Proteome, and Urinome Signature.\",\"authors\":\"Isabel Heidegger, Maria Frantzi, Stefan Salcher, Piotr Tymoszuk, Agnieszka Martowicz, Enrique Gomez-Gomez, Ana Blanca, Guillermo Lendinez Cano, Agnieszka Latosinska, Harald Mischak, Antonia Vlahou, Christian Langer, Friedrich Aigner, Martin Puhr, Anne Krogsdam, Zlatko Trajanoski, Dominik Wolf, Andreas Pircher\",\"doi\":\"10.1016/j.euo.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2).</p><p><strong>Methods: </strong>Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures.</p><p><strong>Key findings and limitations: </strong>Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation.</p><p><strong>Conclusions and clinical implications: </strong>Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions.</p><p><strong>Patient summary: </strong>In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.</p>\",\"PeriodicalId\":12256,\"journal\":{\"name\":\"European urology oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European urology oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.euo.2024.05.014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European urology oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.euo.2024.05.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prediction of Clinically Significant Prostate Cancer by a Specific Collagen-related Transcriptome, Proteome, and Urinome Signature.
Background and objective: While collagen density has been associated with poor outcomes in various cancers, its role in prostate cancer (PCa) remains elusive. Our aim was to analyze collagen-related transcriptomic, proteomic, and urinome alterations in the context of detection of clinically significant PCa (csPCa, International Society of Urological Pathology [ISUP] grade group ≥2).
Methods: Comprehensive analyses for PCa transcriptome (n = 1393), proteome (n = 104), and urinome (n = 923) data sets focused on 55 collagen-related genes. Investigation of the cellular source of collagen-related transcripts via single-cell RNA sequencing was conducted. Statistical evaluations, clustering, and machine learning models were used for data analysis to identify csPCa signatures.
Key findings and limitations: Differential expression of 30 of 55 collagen-related genes and 34 proteins was confirmed in csPCa in comparison to benign prostate tissue or ISUP 1 cancer. A collagen-high cancer cluster exhibited distinct cellular and molecular characteristics, including fibroblast and endothelial cell infiltration, intense extracellular matrix turnover, and enhanced growth factor and inflammatory signaling. Robust collagen-based machine learning models were established to identify csPCa. The models outcompeted prostate-specific antigen (PSA) and age, showing comparable performance to multiparametric magnetic resonance imaging (mpMRI) in predicting csPCa. Of note, the urinome-based collagen model identified four of five csPCa cases among patients with Prostate Imaging-Reporting and Data System (PI-IRADS) 3 lesions, for which the presence of csPCa is considered equivocal. The retrospective character of the study is a limitation.
Conclusions and clinical implications: Collagen-related transcriptome, proteome, and urinome signatures exhibited superior accuracy in detecting csPCa in comparison to PSA and age. The collagen signatures, especially in cases of ambiguous lesions on mpMRI, successfully identified csPCa and could potentially reduce unnecessary biopsies. The urinome-based collagen signature represents a promising liquid biopsy tool that requires prospective evaluation to improve the potential of this collagen-based approach to enhance diagnostic precision in PCa for risk stratification and guiding personalized interventions.
Patient summary: In our study, collagen-related alterations in tissue, and urine were able to predict the presence of clinically significant prostate cancer at primary diagnosis.
期刊介绍:
Journal Name: European Urology Oncology
Affiliation: Official Journal of the European Association of Urology
Focus:
First official publication of the EAU fully devoted to the study of genitourinary malignancies
Aims to deliver high-quality research
Content:
Includes original articles, opinion piece editorials, and invited reviews
Covers clinical, basic, and translational research
Publication Frequency: Six times a year in electronic format