{"title":"HOLOTHURIA SCABRA METHANOL EXTRACT INHIBITS CANCER GROWTHING THROUGH TGF-β/PI3K/PTEN SIGNALING PATHWAY IN BREAST CANCER MICE MODEL.","authors":"Hana Ratnawati, Teresa Liliana Wargasetia, Larissa Larissa, Liana Alvitri, Keane Bryant","doi":"10.15407/exp-oncology.2024.01.022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Molecules and cytokines can be targeted in cancer therapy. Transforming growth factor-beta (TGF-β) is a cytokine that acts on protein kinase receptors in the plasma membrane. The signaling pathway of TGF-β can trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, a signal transduction pathway important in cancer growth and development. However, this PI3K/AKT cascade can be inhibited by phosphatase and tensin homolog (PTEN) tumor suppressor genes.</p><p><strong>Aim: </strong>To determine the inhibitory effect of Holothuria scabra methanol extract (HSE) on breast cancer growth through the TGF-β/PI3K pathways and PTEN tumor suppressor gene on a breast cancer (BC) mice model.</p><p><strong>Materials and methods: </strong>Female C57BL6 mice were subcutaneously injected with carcinogen DMBA 1 mg/kg body weight (BW) and fed a high-fat diet (HFD). Mice were randomly divided into five groups (n = 6): negative control (NC) administered with a standard diet, positive control (PC) administered with DMBA and HFD, and three treatment groups (T1, T2, and T3) treated with HSE doses of 0.33, 0.66, and 0.99 g/kg BW for 12 weeks. TGF-β concentration in the blood serum of mice was assessed by ELISA and the PIK3CA and PTEN gene expression by qRT-PCR.</p><p><strong>Results: </strong>The treatment with HSE resulted in a significant decrease in TGF-β concentrations in the blood sera of treatment groups T1 (35.31 ± 17.33), T2 (43.31 ± 17.42), and T3 (48.67 ± 20.94) pg/mL compared to the PC group (162.09 ± 11.60) pg/mL (p < 0.001). However, only HSE at a dose of 0.99 g/kg BW decreased the PIK3CA gene expression (p = 0.026), and at a dose of 0.66 g/kg BW increased the PTEN expression up to 4.93-fold.</p><p><strong>Conclusion: </strong>HSE is capable of inhibiting the TGF-β/PIK3CA pathway and increasing the PTEN gene expression.</p>","PeriodicalId":94318,"journal":{"name":"Experimental oncology","volume":"46 1","pages":"22-29"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOLOTHURIA SCABRA METHANOL EXTRACT INHIBITS CANCER GROWTH THROUGH TGF-β/PI3K/PTEN SIGNALING PATHWAY IN BREAST CANCER MICE MODEL.\",\"authors\":\"Hana Ratnawati, Teresa Liliana Wargasetia, Larissa Larissa, Liana Alvitri, Keane Bryant\",\"doi\":\"10.15407/exp-oncology.2024.01.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Molecules and cytokines can be targeted in cancer therapy. Transforming growth factor-beta (TGF-β) is a cytokine that acts on protein kinase receptors in the plasma membrane. The signaling pathway of TGF-β can trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, a signal transduction pathway important in cancer growth and development. However, this PI3K/AKT cascade can be inhibited by phosphatase and tensin homolog (PTEN) tumor suppressor genes.</p><p><strong>Aim: </strong>To determine the inhibitory effect of Holothuria scabra methanol extract (HSE) on breast cancer growth through the TGF-β/PI3K pathways and PTEN tumor suppressor gene on a breast cancer (BC) mice model.</p><p><strong>Materials and methods: </strong>Female C57BL6 mice were subcutaneously injected with carcinogen DMBA 1 mg/kg body weight (BW) and fed a high-fat diet (HFD). Mice were randomly divided into five groups (n = 6): negative control (NC) administered with a standard diet, positive control (PC) administered with DMBA and HFD, and three treatment groups (T1, T2, and T3) treated with HSE doses of 0.33, 0.66, and 0.99 g/kg BW for 12 weeks. TGF-β concentration in the blood serum of mice was assessed by ELISA and the PIK3CA and PTEN gene expression by qRT-PCR.</p><p><strong>Results: </strong>The treatment with HSE resulted in a significant decrease in TGF-β concentrations in the blood sera of treatment groups T1 (35.31 ± 17.33), T2 (43.31 ± 17.42), and T3 (48.67 ± 20.94) pg/mL compared to the PC group (162.09 ± 11.60) pg/mL (p < 0.001). However, only HSE at a dose of 0.99 g/kg BW decreased the PIK3CA gene expression (p = 0.026), and at a dose of 0.66 g/kg BW increased the PTEN expression up to 4.93-fold.</p><p><strong>Conclusion: </strong>HSE is capable of inhibiting the TGF-β/PIK3CA pathway and increasing the PTEN gene expression.</p>\",\"PeriodicalId\":94318,\"journal\":{\"name\":\"Experimental oncology\",\"volume\":\"46 1\",\"pages\":\"22-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/exp-oncology.2024.01.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/exp-oncology.2024.01.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HOLOTHURIA SCABRA METHANOL EXTRACT INHIBITS CANCER GROWTH THROUGH TGF-β/PI3K/PTEN SIGNALING PATHWAY IN BREAST CANCER MICE MODEL.
Background: Molecules and cytokines can be targeted in cancer therapy. Transforming growth factor-beta (TGF-β) is a cytokine that acts on protein kinase receptors in the plasma membrane. The signaling pathway of TGF-β can trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, a signal transduction pathway important in cancer growth and development. However, this PI3K/AKT cascade can be inhibited by phosphatase and tensin homolog (PTEN) tumor suppressor genes.
Aim: To determine the inhibitory effect of Holothuria scabra methanol extract (HSE) on breast cancer growth through the TGF-β/PI3K pathways and PTEN tumor suppressor gene on a breast cancer (BC) mice model.
Materials and methods: Female C57BL6 mice were subcutaneously injected with carcinogen DMBA 1 mg/kg body weight (BW) and fed a high-fat diet (HFD). Mice were randomly divided into five groups (n = 6): negative control (NC) administered with a standard diet, positive control (PC) administered with DMBA and HFD, and three treatment groups (T1, T2, and T3) treated with HSE doses of 0.33, 0.66, and 0.99 g/kg BW for 12 weeks. TGF-β concentration in the blood serum of mice was assessed by ELISA and the PIK3CA and PTEN gene expression by qRT-PCR.
Results: The treatment with HSE resulted in a significant decrease in TGF-β concentrations in the blood sera of treatment groups T1 (35.31 ± 17.33), T2 (43.31 ± 17.42), and T3 (48.67 ± 20.94) pg/mL compared to the PC group (162.09 ± 11.60) pg/mL (p < 0.001). However, only HSE at a dose of 0.99 g/kg BW decreased the PIK3CA gene expression (p = 0.026), and at a dose of 0.66 g/kg BW increased the PTEN expression up to 4.93-fold.
Conclusion: HSE is capable of inhibiting the TGF-β/PIK3CA pathway and increasing the PTEN gene expression.