利用大地遥感卫星数据、空间广义回归模型和光谱-时间指标绘制全球生物群落的土地覆被分数图

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-06-08 DOI:10.1016/j.rse.2024.114260
Franz Schug , Kira A. Pfoch , Vu-Dong Pham , Sebastian van der Linden , Akpona Okujeni , David Frantz , Volker C. Radeloff
{"title":"利用大地遥感卫星数据、空间广义回归模型和光谱-时间指标绘制全球生物群落的土地覆被分数图","authors":"Franz Schug ,&nbsp;Kira A. Pfoch ,&nbsp;Vu-Dong Pham ,&nbsp;Sebastian van der Linden ,&nbsp;Akpona Okujeni ,&nbsp;David Frantz ,&nbsp;Volker C. Radeloff","doi":"10.1016/j.rse.2024.114260","DOIUrl":null,"url":null,"abstract":"<div><p>Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics\",\"authors\":\"Franz Schug ,&nbsp;Kira A. Pfoch ,&nbsp;Vu-Dong Pham ,&nbsp;Sebastian van der Linden ,&nbsp;Akpona Okujeni ,&nbsp;David Frantz ,&nbsp;Volker C. Radeloff\",\"doi\":\"10.1016/j.rse.2024.114260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients.</p></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724002785\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724002785","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

绘制高度异质地貌的土地覆被图具有挑战性,当遥感数据的空间分辨率超过小物体的大小时,分类就会受到固有的限制。例如,基于 30 米大地遥感卫星数据的分类不能很好地捕捉城市或其他异质环境。这种限制可以通过量化不同土地覆被类型的子像素分数来克服。然而,为亚像素土地覆被制图而设计的模型的选择过程和跨生物群落的可移植性仍具有挑战性。我们的问题是:(a) 本地训练的模型在多大程度上可用于其他生物群落的亚像素土地覆被分数估算;(b) 来自不同地区的训练数据可合并成空间广义模型,以量化全球生物群落的分数。我们利用 2022 年的大地遥感卫星数据,应用基于机器学习回归的分数绘图法量化了五个生物群落中 18 个区域的土地覆被分数。我们使用光谱-时间度量纳入了年内时间信息,并比较了本地模型、空间转移模型和空间广义模型的性能。本地模型在应用于各自地点时表现最佳(平均绝对误差,MAE,9-18%),在转移到同一生物群落内的其他地点时也表现良好,但在生物群落外的地点表现并不一致。然而,在分析许多不同生物群落的地点时,结合了许多地点输入数据的空间广义模型效果非常好,其 MAE 值仅略高于各自的本地模型。采用加权训练数据选择方法,优先选择与待预测图像数据光谱距离较小的训练数据,进一步提高了广义模型的性能。我们的研究结果表明,基于空间广义回归的分数模型可以在全球范围内支持基于中等分辨率卫星图像的多类亚像素分数估算。此类产品对于异质环境和土地覆盖沿空间或时间梯度变化的环境监测具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics

Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
River ice breakup classification using dual- (HH&HV) or compact-polarization RADARSAT Constellation Mission data Characterizing fire and fire atmospheric states from space using collocated hyperspectral infrared sounding and narrow-band imagery Comparative validation of recent 10 m-resolution global land cover maps Automating the detection of hydrological barriers and fragmentation in wetlands using deep learning and InSAR A machine learning scheme for estimating fine-resolution grassland aboveground biomass over China with Sentinel-1/2 satellite images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1