通过校正土壤效应将树冠光化学反射率指数降级到叶片水平

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-06-08 DOI:10.1016/j.rse.2024.114250
Peiqi Yang
{"title":"通过校正土壤效应将树冠光化学反射率指数降级到叶片水平","authors":"Peiqi Yang","doi":"10.1016/j.rse.2024.114250","DOIUrl":null,"url":null,"abstract":"<div><p>The photochemical reflectance index (PRI) is a promising remote sensing signal for monitoring vegetation physiology. Variations in leaf PRI are usually attributed to either the energy-dependent xanthophyll cycle or the carotenoid-chlorophyll ratio, both indicative of leaf physiology. However, canopy PRI is subject to soil, canopy structure, and incident and viewing angles, and thus has a weaker and more complicated relationship with vegetation photosynthetic activity or leaf pigment composition. Therefore, downscaling canopy PRI to the leaf level is essential for accurate remote sensing of vegetation physiology using PRI. An earlier investigation (P.Yang, <em>RSE</em>, 279, 113,133, 2022) illustrates that structural and angular variations in canopy PRI primarily result from varying degrees of soil interference. In this study, a soil correction method is proposed to mitigate the soil effects on top-of-canopy (TOC) reflectance at the PRI bands. The soil effects on TOC reflectance at 531 nm and 570 nm are respectively estimated as <span><math><msubsup><mi>R</mi><mn>531</mn><mi>soil</mi></msubsup><mo>×</mo><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span> and <span><math><msubsup><mi>R</mi><mn>570</mn><mi>soil</mi></msubsup><mo>×</mo><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span>, where <span><math><msub><mi>R</mi><mn>675</mn></msub></math></span> is TOC red reflectance, <span><math><msubsup><mi>R</mi><mi>λ</mi><mi>soil</mi></msubsup><mspace></mspace></math></span> soil reflectance at wavelength<span><math><mspace></mspace><mi>λ</mi></math></span>. <span><math><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span> approximates the fraction of the observed sunlit soil, as leaves are nearly black at 675 nm due to strong absorption of chlorophyll, and <span><math><msub><mi>R</mi><mn>675</mn></msub></math></span> is mainly contributed from soil. To assess the effectiveness of the soil correction method, a wheat field dataset, a corn field dataset, and a simulated dataset, were utilized. The soil-adjusted and the original canopy PRI were compared with the leaf PRI for the real and synthetic scenarios that had various soil brightness, leaf chlorophyll content and canopy structure. Both the field and numerical experiments demonstrate that, for the canopies with low vegetation coverage and substantial soil contamination, the original canopy PRI was largely different from the leaf PRI, displaying substantial structural and angular dependence. In comparison, the soil-adjusted canopy PRI was more closely aligned with the PRI observed in the sunlit leaves in all three datasets. This study shows that accounting for the soil effects with TOC red reflectance allows downscaling canopy PRI to the leaf level. The soil-adjusted canopy PRI contributes to remote sensing of the xanthophyll cycle or the carotenoid-chlorophyll ratio from canopy PRI.</p></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downscaling canopy photochemical reflectance index to leaf level by correcting for the soil effects\",\"authors\":\"Peiqi Yang\",\"doi\":\"10.1016/j.rse.2024.114250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The photochemical reflectance index (PRI) is a promising remote sensing signal for monitoring vegetation physiology. Variations in leaf PRI are usually attributed to either the energy-dependent xanthophyll cycle or the carotenoid-chlorophyll ratio, both indicative of leaf physiology. However, canopy PRI is subject to soil, canopy structure, and incident and viewing angles, and thus has a weaker and more complicated relationship with vegetation photosynthetic activity or leaf pigment composition. Therefore, downscaling canopy PRI to the leaf level is essential for accurate remote sensing of vegetation physiology using PRI. An earlier investigation (P.Yang, <em>RSE</em>, 279, 113,133, 2022) illustrates that structural and angular variations in canopy PRI primarily result from varying degrees of soil interference. In this study, a soil correction method is proposed to mitigate the soil effects on top-of-canopy (TOC) reflectance at the PRI bands. The soil effects on TOC reflectance at 531 nm and 570 nm are respectively estimated as <span><math><msubsup><mi>R</mi><mn>531</mn><mi>soil</mi></msubsup><mo>×</mo><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span> and <span><math><msubsup><mi>R</mi><mn>570</mn><mi>soil</mi></msubsup><mo>×</mo><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span>, where <span><math><msub><mi>R</mi><mn>675</mn></msub></math></span> is TOC red reflectance, <span><math><msubsup><mi>R</mi><mi>λ</mi><mi>soil</mi></msubsup><mspace></mspace></math></span> soil reflectance at wavelength<span><math><mspace></mspace><mi>λ</mi></math></span>. <span><math><msub><mi>R</mi><mn>675</mn></msub><mo>/</mo><msubsup><mi>R</mi><mn>675</mn><mi>soil</mi></msubsup></math></span> approximates the fraction of the observed sunlit soil, as leaves are nearly black at 675 nm due to strong absorption of chlorophyll, and <span><math><msub><mi>R</mi><mn>675</mn></msub></math></span> is mainly contributed from soil. To assess the effectiveness of the soil correction method, a wheat field dataset, a corn field dataset, and a simulated dataset, were utilized. The soil-adjusted and the original canopy PRI were compared with the leaf PRI for the real and synthetic scenarios that had various soil brightness, leaf chlorophyll content and canopy structure. Both the field and numerical experiments demonstrate that, for the canopies with low vegetation coverage and substantial soil contamination, the original canopy PRI was largely different from the leaf PRI, displaying substantial structural and angular dependence. In comparison, the soil-adjusted canopy PRI was more closely aligned with the PRI observed in the sunlit leaves in all three datasets. This study shows that accounting for the soil effects with TOC red reflectance allows downscaling canopy PRI to the leaf level. The soil-adjusted canopy PRI contributes to remote sensing of the xanthophyll cycle or the carotenoid-chlorophyll ratio from canopy PRI.</p></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724002682\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724002682","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光化学反射率指数(PRI)是监测植被生理学的一种前景广阔的遥感信号。叶片 PRI 的变化通常归因于与能量相关的黄绿素循环或类胡萝卜素-叶绿素比率,两者都表明了叶片的生理机能。然而,冠层 PRI 受土壤、冠层结构、入射角和视角的影响,因此与植被光合作用活动或叶片色素组成的关系更弱、更复杂。因此,将冠层 PRI 降尺度到叶片水平对于利用 PRI 精确遥感植被生理至关重要。早先的一项调查(P.Yang,RSE,279,113,133,2022)表明,冠层 PRI 的结构和角度变化主要源于不同程度的土壤干扰。本研究提出了一种土壤校正方法,以减轻土壤对 PRI 波段冠层顶部 (TOC) 反射率的影响。土壤对 531 nm 和 570 nm 波长 TOC 反射率的影响分别估算为 R531soil×R675/R675soil 和 R570soil×R675/R675soil,其中 R675 为 TOC 红色反射率,Rλsoil 为波长λ处的土壤反射率。R675/R675soil 近似于观测到的日照土壤的部分,因为叶片由于叶绿素的强烈吸收,在 675 nm 波长处几乎是黑色的,而 R675 主要来自土壤。为了评估土壤校正方法的有效性,我们使用了一个小麦田数据集、一个玉米田数据集和一个模拟数据集。在不同土壤亮度、叶片叶绿素含量和冠层结构的真实和合成场景中,土壤修正后的冠层 PRI 和原始冠层 PRI 与叶片 PRI 进行了比较。实地和数值实验都表明,对于植被覆盖率低、土壤污染严重的冠层,原始冠层 PRI 与叶片 PRI 有很大差异,显示出很大的结构和角度依赖性。相比之下,在所有三个数据集中,土壤调整后的冠层 PRI 与在阳光下观察到的叶片 PRI 更加接近。这项研究表明,利用总有机碳红色反射率考虑土壤效应可以将冠层 PRI 缩减到叶片水平。经土壤调整的冠层 PRI 有助于从冠层 PRI 遥感黄绿素循环或类胡萝卜素-叶绿素比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Downscaling canopy photochemical reflectance index to leaf level by correcting for the soil effects

The photochemical reflectance index (PRI) is a promising remote sensing signal for monitoring vegetation physiology. Variations in leaf PRI are usually attributed to either the energy-dependent xanthophyll cycle or the carotenoid-chlorophyll ratio, both indicative of leaf physiology. However, canopy PRI is subject to soil, canopy structure, and incident and viewing angles, and thus has a weaker and more complicated relationship with vegetation photosynthetic activity or leaf pigment composition. Therefore, downscaling canopy PRI to the leaf level is essential for accurate remote sensing of vegetation physiology using PRI. An earlier investigation (P.Yang, RSE, 279, 113,133, 2022) illustrates that structural and angular variations in canopy PRI primarily result from varying degrees of soil interference. In this study, a soil correction method is proposed to mitigate the soil effects on top-of-canopy (TOC) reflectance at the PRI bands. The soil effects on TOC reflectance at 531 nm and 570 nm are respectively estimated as R531soil×R675/R675soil and R570soil×R675/R675soil, where R675 is TOC red reflectance, Rλsoil soil reflectance at wavelengthλ. R675/R675soil approximates the fraction of the observed sunlit soil, as leaves are nearly black at 675 nm due to strong absorption of chlorophyll, and R675 is mainly contributed from soil. To assess the effectiveness of the soil correction method, a wheat field dataset, a corn field dataset, and a simulated dataset, were utilized. The soil-adjusted and the original canopy PRI were compared with the leaf PRI for the real and synthetic scenarios that had various soil brightness, leaf chlorophyll content and canopy structure. Both the field and numerical experiments demonstrate that, for the canopies with low vegetation coverage and substantial soil contamination, the original canopy PRI was largely different from the leaf PRI, displaying substantial structural and angular dependence. In comparison, the soil-adjusted canopy PRI was more closely aligned with the PRI observed in the sunlit leaves in all three datasets. This study shows that accounting for the soil effects with TOC red reflectance allows downscaling canopy PRI to the leaf level. The soil-adjusted canopy PRI contributes to remote sensing of the xanthophyll cycle or the carotenoid-chlorophyll ratio from canopy PRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
River ice breakup classification using dual- (HH&HV) or compact-polarization RADARSAT Constellation Mission data Characterizing fire and fire atmospheric states from space using collocated hyperspectral infrared sounding and narrow-band imagery Comparative validation of recent 10 m-resolution global land cover maps Automating the detection of hydrological barriers and fragmentation in wetlands using deep learning and InSAR A machine learning scheme for estimating fine-resolution grassland aboveground biomass over China with Sentinel-1/2 satellite images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1