{"title":"苍术素通过下调 microRNA-214-5p 减轻炎症,从而缓解脓毒症相关的心功能不全。","authors":"Chunyan Li, Daorong Hou, Yanhong Huang, Yifan Liu, Yong Li, Cheng Wang","doi":"10.1093/toxres/tfae081","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Corylin, a natural flavonoid, is isolated from the fruit of <i>Psoralea corylifolia</i> L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction.</p><p><strong>Methods: </strong>Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS.</p><p><strong>Results: </strong>Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS.</p><p><strong>Conclusion: </strong>These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p.\",\"authors\":\"Chunyan Li, Daorong Hou, Yanhong Huang, Yifan Liu, Yong Li, Cheng Wang\",\"doi\":\"10.1093/toxres/tfae081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Corylin, a natural flavonoid, is isolated from the fruit of <i>Psoralea corylifolia</i> L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction.</p><p><strong>Methods: </strong>Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS.</p><p><strong>Results: </strong>Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS.</p><p><strong>Conclusion: </strong>These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p.
Background: Corylin, a natural flavonoid, is isolated from the fruit of Psoralea corylifolia L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction.
Methods: Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS.
Results: Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS.
Conclusion: These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.