Luigi Pisano, Simone Giovannuzzi, Claudiu T Supuran
{"title":"淋病奈瑟菌感染的管理:从耐药性到药物再利用。","authors":"Luigi Pisano, Simone Giovannuzzi, Claudiu T Supuran","doi":"10.1080/13543776.2024.2367005","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong><i>Neisseria gonorrhoeae</i> is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management.</p><p><strong>Areas covered: </strong>New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target.</p><p><strong>Expert opinion: </strong>By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management of <i>Neisseria gonorrhoeae</i> infection: from drug resistance to drug repurposing.\",\"authors\":\"Luigi Pisano, Simone Giovannuzzi, Claudiu T Supuran\",\"doi\":\"10.1080/13543776.2024.2367005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong><i>Neisseria gonorrhoeae</i> is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management.</p><p><strong>Areas covered: </strong>New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target.</p><p><strong>Expert opinion: </strong>By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.</p>\",\"PeriodicalId\":12314,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Patents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Patents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13543776.2024.2367005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2367005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
导言:淋病奈瑟菌是一种常见的性传播疾病,对许多抗生素具有广泛的耐药性。目前,只有扩谱头孢菌素(头孢曲松和头孢克肟)和阿奇霉素仍可用于治疗:经典抗生素药物靶点回旋酶/拓扑异构酶 IV 的新化学类型提供了与这些酶强效结合的抑制剂,其抑制机制与氟喹诺酮类药物不同,因此不易发生突变。该细菌基因组中的α-碳酸酐酶(NgCAα)也被确认为抗菌靶标:通过利用回旋酶/拓扑异构酶 IV 的不同亚基以及新的化学类型,两种新型抗生素(唑氟达嗪和格泊他嗪)已进入 II/III 期临床试验阶段。与氟喹诺酮类药物相比,它们具有新的抑制机制,能与酶的不同部位结合。此外,还报道了对这些酶具有抑制活性的其他化学类型。我们获得了属于不同类别的 NgCAα 抑制剂,其中几种磺胺类药物的 MIC 值在 0.25 - 4 µg/mL 之间,在动物感染模型中具有显著活性。因此,乙酰唑胺和类似的 CA 抑制剂可能会被重新用作抗感染药物。在PubMed、ScienceDirect、Espacenet和PatentGuru上检索了2016年至2024年的科学/专利文献。
Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing.
Introduction: Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management.
Areas covered: New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target.
Expert opinion: By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
期刊介绍:
Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature.
The Editors welcome:
Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area
Patent Evaluations examining the aims and chemical and biological claims of individual patents
Perspectives on issues relating to intellectual property
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D
Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.