CRISPR/Cas9 介导的 Uox 基因缺失产生了一种具有多种并发症的高尿酸血症小鼠模型。

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Translational Research Pub Date : 2024-12-01 Epub Date: 2024-06-10 DOI:10.1007/s12265-024-10526-6
Linzi Zeng, Shalaimaiti Shali, Yabiao Gao, Xingchen Du, Xiaoxia Zhu, Lin Li, Yuxiang Dai, Ping Zhou
{"title":"CRISPR/Cas9 介导的 Uox 基因缺失产生了一种具有多种并发症的高尿酸血症小鼠模型。","authors":"Linzi Zeng, Shalaimaiti Shali, Yabiao Gao, Xingchen Du, Xiaoxia Zhu, Lin Li, Yuxiang Dai, Ping Zhou","doi":"10.1007/s12265-024-10526-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperuricemia is a common metabolic disorder with severe complications. We aimed to develop a mouse model for spontaneous hyperuricemia. Uox<sup>-/-</sup> mouse model was generated on C57BL/6J background by deleting exon 2-4 of Uox using the CRISPR/Cas9 system. The prototypic Uox <sup>-/-</sup>mice had 5.5-fold increased serum uric acid (1351.04±276.58μmol/L) as compared to the wild type mice (P<0.0001), but died by 4 weeks. After allopurinol (3ug/g) intervention, they all survived > 8 weeks. The serum uric acid was 612.55±146.98μmol/L in the 8-week-old allopurinol-rescued Uox <sup>-/-</sup>mice, which manifested multiple complications including severe renal insufficiency, hypertension, left ventricular remodeling and systolic dysfunction, aortic endothelial dysfunction, hepatic steatosis and elevated liver enzymes, as well as hyperglycemia and hypercholesteremia. The present Uox<sup>-/-</sup> mice developed spontaneous hyperuricemia complicated with urate nephropathy, cardiovascular disease and cardiometabolic disorders, and may provide a novel tool to study hyperuricemia associated early-onset cardiovascular disorders in human.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1455-1465"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635051/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 Mediated Deletion of the Uox Gene Generates a Mouse Model of Hyperuricemia with Multiple Complications.\",\"authors\":\"Linzi Zeng, Shalaimaiti Shali, Yabiao Gao, Xingchen Du, Xiaoxia Zhu, Lin Li, Yuxiang Dai, Ping Zhou\",\"doi\":\"10.1007/s12265-024-10526-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperuricemia is a common metabolic disorder with severe complications. We aimed to develop a mouse model for spontaneous hyperuricemia. Uox<sup>-/-</sup> mouse model was generated on C57BL/6J background by deleting exon 2-4 of Uox using the CRISPR/Cas9 system. The prototypic Uox <sup>-/-</sup>mice had 5.5-fold increased serum uric acid (1351.04±276.58μmol/L) as compared to the wild type mice (P<0.0001), but died by 4 weeks. After allopurinol (3ug/g) intervention, they all survived > 8 weeks. The serum uric acid was 612.55±146.98μmol/L in the 8-week-old allopurinol-rescued Uox <sup>-/-</sup>mice, which manifested multiple complications including severe renal insufficiency, hypertension, left ventricular remodeling and systolic dysfunction, aortic endothelial dysfunction, hepatic steatosis and elevated liver enzymes, as well as hyperglycemia and hypercholesteremia. The present Uox<sup>-/-</sup> mice developed spontaneous hyperuricemia complicated with urate nephropathy, cardiovascular disease and cardiometabolic disorders, and may provide a novel tool to study hyperuricemia associated early-onset cardiovascular disorders in human.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"1455-1465\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-024-10526-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10526-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

高尿酸血症是一种常见的代谢性疾病,具有严重的并发症。我们旨在建立一种自发性高尿酸血症小鼠模型。我们利用 CRISPR/Cas9 系统删除了 Uox 的 2-4 号外显子,在 C57BL/6J 背景下建立了 Uox-/- 小鼠模型。与野生型小鼠相比,Uox-/-小鼠原型的血清尿酸(1351.04±276.58μmol/L)增加了5.5倍(P 8周)。8周龄的别嘌呤醇挽救Uox-/-小鼠的血清尿酸为612.55±146.98μmol/L,表现出多种并发症,包括严重的肾功能不全、高血压、左心室重塑和收缩功能障碍、主动脉内皮功能障碍、肝脏脂肪变性和肝酶升高,以及高血糖和高胆固醇血症。本 Uox-/- 小鼠出现自发性高尿酸血症,并伴有尿酸盐肾病、心血管疾病和心血管代谢紊乱,这可能为研究与高尿酸血症相关的人类早发心血管疾病提供了一种新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 Mediated Deletion of the Uox Gene Generates a Mouse Model of Hyperuricemia with Multiple Complications.

Hyperuricemia is a common metabolic disorder with severe complications. We aimed to develop a mouse model for spontaneous hyperuricemia. Uox-/- mouse model was generated on C57BL/6J background by deleting exon 2-4 of Uox using the CRISPR/Cas9 system. The prototypic Uox -/-mice had 5.5-fold increased serum uric acid (1351.04±276.58μmol/L) as compared to the wild type mice (P<0.0001), but died by 4 weeks. After allopurinol (3ug/g) intervention, they all survived > 8 weeks. The serum uric acid was 612.55±146.98μmol/L in the 8-week-old allopurinol-rescued Uox -/-mice, which manifested multiple complications including severe renal insufficiency, hypertension, left ventricular remodeling and systolic dysfunction, aortic endothelial dysfunction, hepatic steatosis and elevated liver enzymes, as well as hyperglycemia and hypercholesteremia. The present Uox-/- mice developed spontaneous hyperuricemia complicated with urate nephropathy, cardiovascular disease and cardiometabolic disorders, and may provide a novel tool to study hyperuricemia associated early-onset cardiovascular disorders in human.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
期刊最新文献
Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery. NAT10 Modulates Atherosclerosis Progression Mediated by Macrophage Polarization Through Regulating ac4C Modification of TLR9. Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. Endothelial Cell-Derived Extracellular Vesicles Allow to Differentiate Between Various Endotypes of INOCA: A Multicentre, Prospective, Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1