Duc Minh Tran, Mark Bo Jensen, Pablo Santafé-Gabarda, Stefan Källberg, Alejandro Ferrero, Morten Rieger Hannemose, Jeppe Revall Frisvad
{"title":"通过验证计算出的光学特性来数字化半透明物体的外观。","authors":"Duc Minh Tran, Mark Bo Jensen, Pablo Santafé-Gabarda, Stefan Källberg, Alejandro Ferrero, Morten Rieger Hannemose, Jeppe Revall Frisvad","doi":"10.1364/AO.521974","DOIUrl":null,"url":null,"abstract":"<p><p>The optical properties available for an object are most often fragmented and insufficient for photorealistic rendering of the object. We propose a procedure for digitizing a translucent object with sufficient information for predictive rendering of its appearance. Based on object material descriptions, we compute optical properties and validate or adjust this object appearance model based on comparison of simulation with spectrophotometric measurements of the bidirectional scattering-surface reflectance distribution function (BSSRDF). To ease this type of comparison, we provide an efficient simulation tool that computes the BSSRDF for a particular light-view configuration. Even with just a few configurations, the localized lighting in BSSRDF measurements is useful for assessing the appropriateness of computed or otherwise acquired optical properties. To validate an object appearance model in a more common lighting environment, we render the appearance of the obtained digital twin and assess the photorealism of our renderings through pixel-by-pixel comparison with photographs of the physical object.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digitizing translucent object appearance by validating computed optical properties.\",\"authors\":\"Duc Minh Tran, Mark Bo Jensen, Pablo Santafé-Gabarda, Stefan Källberg, Alejandro Ferrero, Morten Rieger Hannemose, Jeppe Revall Frisvad\",\"doi\":\"10.1364/AO.521974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The optical properties available for an object are most often fragmented and insufficient for photorealistic rendering of the object. We propose a procedure for digitizing a translucent object with sufficient information for predictive rendering of its appearance. Based on object material descriptions, we compute optical properties and validate or adjust this object appearance model based on comparison of simulation with spectrophotometric measurements of the bidirectional scattering-surface reflectance distribution function (BSSRDF). To ease this type of comparison, we provide an efficient simulation tool that computes the BSSRDF for a particular light-view configuration. Even with just a few configurations, the localized lighting in BSSRDF measurements is useful for assessing the appropriateness of computed or otherwise acquired optical properties. To validate an object appearance model in a more common lighting environment, we render the appearance of the obtained digital twin and assess the photorealism of our renderings through pixel-by-pixel comparison with photographs of the physical object.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.521974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.521974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digitizing translucent object appearance by validating computed optical properties.
The optical properties available for an object are most often fragmented and insufficient for photorealistic rendering of the object. We propose a procedure for digitizing a translucent object with sufficient information for predictive rendering of its appearance. Based on object material descriptions, we compute optical properties and validate or adjust this object appearance model based on comparison of simulation with spectrophotometric measurements of the bidirectional scattering-surface reflectance distribution function (BSSRDF). To ease this type of comparison, we provide an efficient simulation tool that computes the BSSRDF for a particular light-view configuration. Even with just a few configurations, the localized lighting in BSSRDF measurements is useful for assessing the appropriateness of computed or otherwise acquired optical properties. To validate an object appearance model in a more common lighting environment, we render the appearance of the obtained digital twin and assess the photorealism of our renderings through pixel-by-pixel comparison with photographs of the physical object.