Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao
{"title":"基于双环红外光源同步成像机制的高速眼球跟踪。","authors":"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao","doi":"10.1364/AO.521840","DOIUrl":null,"url":null,"abstract":"<p><p>It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed eye tracking based on a synchronized imaging mechanism by a dual-ring infrared lighting source.\",\"authors\":\"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao\",\"doi\":\"10.1364/AO.521840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.521840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.521840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-speed eye tracking based on a synchronized imaging mechanism by a dual-ring infrared lighting source.
It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.