基于双环红外光源同步成像机制的高速眼球跟踪。

Applied optics Pub Date : 2024-06-01 DOI:10.1364/AO.521840
Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao
{"title":"基于双环红外光源同步成像机制的高速眼球跟踪。","authors":"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao","doi":"10.1364/AO.521840","DOIUrl":null,"url":null,"abstract":"<p><p>It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.</p>","PeriodicalId":101299,"journal":{"name":"Applied optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed eye tracking based on a synchronized imaging mechanism by a dual-ring infrared lighting source.\",\"authors\":\"Xiao Zhang, Lihui Wang, Yuan He, Zhiwei Mou, Yiqi Cao\",\"doi\":\"10.1364/AO.521840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.</p>\",\"PeriodicalId\":101299,\"journal\":{\"name\":\"Applied optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/AO.521840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/AO.521840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于传统的单目摄像头单光源眼球跟踪方法来说,实现高速眼球跟踪是一项挑战。在这项工作中,设计了一种双环红外照明光源,以高速实现亮瞳孔和暗瞳孔。该眼球跟踪方法使用双环红外照明光源和偶数和奇数相机帧的同步触发器来捕捉明亮和黑暗的瞳孔。瞳孔角膜反射是通过浦肯野角膜斑和瞳孔的中心坐标计算得出的。建立了一个映射函数来映射瞳孔角膜反射和注视点之间的关系。根据映射函数计算出注视坐标。每个注视点的平均检测时间为 3.76 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-speed eye tracking based on a synchronized imaging mechanism by a dual-ring infrared lighting source.

It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical router based on a phase-coding multiplexed collinear holographic storage system Single-frame interferogram phase retrieval using a phase-shifting generative adversarial network with physics-based fine-tuning Optimization-Based Approach for High- Fidelity Phase Retrieval from Sparse Interferometric Data: Implications for Industry and Biological Research A high-gain Ho:YLF sub-nanosecond system seeded by a gain-switched laser diode Optical Double-Image Cryptosystem Based on Joint Transform Correlator in Linear Canonical Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1