F. R. Kschischang, F. Manganiello, A. Ravagnani, K. Savary
{"title":"通过干扰对齐实现多个单播网络的外部编码","authors":"F. R. Kschischang, F. Manganiello, A. Ravagnani, K. Savary","doi":"10.1007/s10623-024-01439-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a formal framework to study the multiple unicast problem for a coded network in which the network code is linear over a finite field and fixed. We show that the problem corresponds to an interference alignment problem over a finite field. In this context, we establish an outer bound for the achievable rate region and provide examples of networks where the bound is sharp. We finally give evidence of the crucial role played by the field characteristic in the problem.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External codes for multiple unicast networks via interference alignment\",\"authors\":\"F. R. Kschischang, F. Manganiello, A. Ravagnani, K. Savary\",\"doi\":\"10.1007/s10623-024-01439-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a formal framework to study the multiple unicast problem for a coded network in which the network code is linear over a finite field and fixed. We show that the problem corresponds to an interference alignment problem over a finite field. In this context, we establish an outer bound for the achievable rate region and provide examples of networks where the bound is sharp. We finally give evidence of the crucial role played by the field characteristic in the problem.\\n</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01439-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01439-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
External codes for multiple unicast networks via interference alignment
We introduce a formal framework to study the multiple unicast problem for a coded network in which the network code is linear over a finite field and fixed. We show that the problem corresponds to an interference alignment problem over a finite field. In this context, we establish an outer bound for the achievable rate region and provide examples of networks where the bound is sharp. We finally give evidence of the crucial role played by the field characteristic in the problem.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.